File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임한권

Lim, Hankwon
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 118183 -
dc.citation.title APPLIED ENERGY -
dc.citation.volume 307 -
dc.contributor.author Byun, Manhee -
dc.contributor.author Lim, Dongjun -
dc.contributor.author Lee, Boreum -
dc.contributor.author Kim, Ayeon -
dc.contributor.author Lee, In-Beum -
dc.contributor.author Brigljevic, Boris -
dc.contributor.author Lim, Hankwon -
dc.date.accessioned 2023-12-21T14:37:30Z -
dc.date.available 2023-12-21T14:37:30Z -
dc.date.created 2022-06-27 -
dc.date.issued 2022-02 -
dc.description.abstract The well-established Haber-Bosch (HB) process (industrial ammonia production) is a significant contributor to the world's carbon emissions as it is a major consumer of natural gas as well as being energy-intensive in general. This work addresses the challenge of decarbonizing the HB process in a novel way as it, for the first time, presents a conceptual process integration with a supercritical CO(2 & nbsp;)Allam power cycle, therefore transforming gaseous CO2 emissions into a valuable side product in a form of liquid CO2. Detailed process design and flowsheet simulation using Aspen Plus (R) was used as a basis for scale-up and techno-economic assessment of two cases (electrical grid dependent and independent). The results indicated that using this process design NH3 production reaches profitability at scales larger than 2 ton h(-1) to 5.4 ton h(-1) and at current global NH3 prices, the cost of manufacturing decrease, due to scale-up stabilizes at ~ 30 ton h(-1). Finally, this novel process integration achieves a significant reduction in gaseous CO2 emissions (compared to conventional HB process) of 68 % to 96 %, which indicates great potential for economically feasible green NH3. -
dc.identifier.bibliographicCitation APPLIED ENERGY, v.307, pp.118183 -
dc.identifier.doi 10.1016/j.apenergy.2021.118183 -
dc.identifier.issn 0306-2619 -
dc.identifier.scopusid 2-s2.0-85120376226 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58864 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0306261921014549?via%3Dihub -
dc.identifier.wosid 000797217300004 -
dc.language 영어 -
dc.publisher ELSEVIER SCI LTD -
dc.title Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Energy & Fuels; Engineering, Chemical -
dc.relation.journalResearchArea Energy & Fuels; Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Ammonia -
dc.subject.keywordAuthor Haber-Bosch decarbonization -
dc.subject.keywordAuthor Supercritical CO2 -
dc.subject.keywordAuthor Process integration -
dc.subject.keywordAuthor Process simulation -
dc.subject.keywordAuthor Techno-economic assessment -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus STEAM -
dc.subject.keywordPlus AIR SEPARATION UNIT -
dc.subject.keywordPlus AMMONIA PRODUCTION -
dc.subject.keywordPlus THERMODYNAMIC ANALYSIS -
dc.subject.keywordPlus HYDROGEN-PRODUCTION -
dc.subject.keywordPlus GREEN AMMONIA -
dc.subject.keywordPlus SYNTHESIS GAS -
dc.subject.keywordPlus METHANE -
dc.subject.keywordPlus CARBON -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.