File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임정호

Im, Jungho
Intelligent Remote sensing and geospatial Information Science Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3156 -
dc.citation.number 7 -
dc.citation.startPage 3143 -
dc.citation.title IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING -
dc.citation.volume 7 -
dc.contributor.author Li, Manqi -
dc.contributor.author Im, Jungho -
dc.contributor.author Quackenbush, Lindi J. -
dc.contributor.author Liu, Tao -
dc.date.accessioned 2023-12-22T02:36:52Z -
dc.date.available 2023-12-22T02:36:52Z -
dc.date.created 2014-09-05 -
dc.date.issued 2014-07 -
dc.description.abstract In response to the need for a better understanding of biosphere-atmosphere interactions as well as carbon cycles, there is a high demand for monitoring key forest parameters such as biomass and carbon stock. These monitoring tasks provide insight into relevant biogeochemical processes as well as anthropogenic impacts on the environment. Recent advances in remote sensing techniques such as Light Detection and Ranging (LiDAR) enable scientists to nondestructively identify structural and biophysical characteristics of forests. This study quantified forest biomass and carbon stock at the plot level from small-footprint full-waveform LiDAR data collected over a montane mixed forest in September 2011, using seven modeling methods: ordinary least squares, generalized additive model, Cubist, bagging, random forest, boosted regression trees, and support vector regression (SVR). Results showed that higher percentiles of canopy height and intensity made significant contributions to the predictions, while other explanatory variables related to canopy geometric volume, structure, and canopy coverage were generally not as important. Boosted regression trees provided the highest accuracy for model calibration, whereas SVR and ordinary least squares performed slightly better than the other models in model validation. In this study, the simple ordinary least squares approach performed just as well as any advanced machine learning method. -
dc.identifier.bibliographicCitation IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, v.7, no.7, pp.3143 - 3156 -
dc.identifier.doi 10.1109/JSTARS.2014.2304642 -
dc.identifier.issn 1939-1404 -
dc.identifier.scopusid 2-s2.0-84906945992 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/5852 -
dc.identifier.wosid 000341568700040 -
dc.language 영어 -
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC -
dc.title Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology -
dc.relation.journalResearchArea Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.