File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김대식

Kim, Dai-Sik
Nano Optics Group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1260 -
dc.citation.number 3 -
dc.citation.startPage 1231 -
dc.citation.title NANOPHOTONICS -
dc.citation.volume 11 -
dc.contributor.author Jeong, Jeeyoon -
dc.contributor.author Kim, Hyun Woo -
dc.contributor.author Kim, Dai-Sik -
dc.date.accessioned 2023-12-21T14:36:34Z -
dc.date.available 2023-12-21T14:36:34Z -
dc.date.created 2022-04-07 -
dc.date.issued 2022-03 -
dc.description.abstract With recent advances in nanofabrication technology, various metallic gap structures with gap widths reaching a few to sub-nanometer, and even 'zero-nanometer', have been realized. At such regime, metallic gaps not only exhibit strong electromagnetic field confinement and enhancement, but also incorporate various quantum phenomena in a macroscopic scale, finding applications in ultrasensitive detection using nanosystems, enhancement of light-matter interactions in low-dimensional materials, and ultralow-power manipulation of electromagnetic waves, etc. Therefore, moving beyond nanometer to 'zero-nanometer' can greatly diversify applications of metallic gaps and may open the field of dynamic 'gaptronics.' In this paper, an overview is given on wafer-scale metallic gap structures down to zero-nanometer gap width limit. Theoretical description of metallic gaps from sub-10 to zero-nanometer limit, various wafer-scale fabrication methods and their applications are presented. With such versatility and broadband applicability spanning visible to terahertz and even microwaves, the field of 'gaptronics' can be a central building block for photochemistry, quantum optical devices, and 5/6G communications. -
dc.identifier.bibliographicCitation NANOPHOTONICS, v.11, no.3, pp.1231 - 1260 -
dc.identifier.doi 10.1515/nanoph-2021-0798 -
dc.identifier.issn 2192-8606 -
dc.identifier.scopusid 2-s2.0-85127839573 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58307 -
dc.identifier.url https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0798/html -
dc.identifier.wosid 000772599100001 -
dc.language 영어 -
dc.publisher WALTER DE GRUYTER GMBH -
dc.title Gaptronics: multilevel photonics applications spanning zero-nanometer limits -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Optics; Physics -
dc.type.docType Review; Early Access -
dc.description.journalRegisteredClass scie -
dc.subject.keywordAuthor light-matter interaction -
dc.subject.keywordAuthor lithography -
dc.subject.keywordAuthor nanophotonics -
dc.subject.keywordAuthor reconfigurable metasurface -
dc.subject.keywordAuthor sub-nanometer -
dc.subject.keywordAuthor wafer-scale -
dc.subject.keywordAuthor zerogap -
dc.subject.keywordPlus ENHANCED RAMAN-SPECTROSCOPY -
dc.subject.keywordPlus TERAHERTZ QUANTUM PLASMONICS -
dc.subject.keywordPlus HIGH-THROUGHPUT FABRICATION -
dc.subject.keywordPlus BOSE-EINSTEIN CONDENSATION -
dc.subject.keywordPlus GLANCING ANGLE DEPOSITION -
dc.subject.keywordPlus SINGLE-MOLECULE -
dc.subject.keywordPlus FIELD ENHANCEMENT -
dc.subject.keywordPlus VISIBLE-LIGHT -
dc.subject.keywordPlus CHEMICAL-REACTION -
dc.subject.keywordPlus MAGNETIC-FIELD -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.