BROWSE

Related Researcher

Author

Madou, Mark
BIO-MEMS Lab
Research Interests
  • Medical Diagnostics

ITEM VIEW & DOWNLOAD

Numerical modeling of transport and accumulation of DNA on electronically active biochips

Cited 31 times inthomson ciCited 32 times inthomson ci
Title
Numerical modeling of transport and accumulation of DNA on electronically active biochips
Author
Kassegne, SKReese, HHodko, DYang, JMSarkar, KSmolko, DSwanson, PRaymond, DEHeller, MJMadou, Mark
Keywords
Active electronic chip; DNA transport; Electrophoresis; Finite element analysis; Hybridization; Micro-electrodes
Issue Date
200308
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.94, no.1, pp.81 - 98
Abstract
Transport and accumulation of biomolecules, particularly DNA, in active electronic chips are investigated through numerical modeling and experimental verification. Various geometric and design configurations of electronically active DNA chips are considered. Further, we investigate the effect of electric field distribution on practical design of flow cells and chips. Particular attention is focused on the geometric effects on current and electric field distribution which are well captured by a finite element method-based model. We demonstrate that these geometric effects are observed only in buffers of very low conductivity. We also demonstrate that numerical models which do not include the charge transfer mechanism between electrodes and the buffer solution will fail to predict the reduction of these geometric effects with increased buffer conductivity. The review of the technology is based on computer simulation using a finite element-based computational model and experimental results of electric field distribution, DNA transport and accumulation. Comparison of theoretical results for electrophoretic DNA accumulation with those obtained from experiments and a simple analytical model is presented.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/S0925-4005(03)00322-8
ISSN
0925-4005
Appears in Collections:
SLS_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU