File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 175 -
dc.citation.number 7132 -
dc.citation.startPage 172 -
dc.citation.title NATURE -
dc.citation.volume 446 -
dc.contributor.author Bao, Zhihao -
dc.contributor.author Weatherspoon, Michael R. -
dc.contributor.author Shian, Samuel -
dc.contributor.author Cai, Ye -
dc.contributor.author Graham, Phillip D. -
dc.contributor.author Allan, Shawn M. -
dc.contributor.author Ahmad, Gul -
dc.contributor.author Dickerson, Matthew B. -
dc.contributor.author Church, Benjamin C. -
dc.contributor.author Kang, Zhitao -
dc.contributor.author Abernathy, Harry W., III -
dc.contributor.author Summers, Christopher J. -
dc.contributor.author Liu, Meilin -
dc.contributor.author Sandhage, Kenneth H. -
dc.date.accessioned 2023-12-22T09:36:37Z -
dc.date.available 2023-12-22T09:36:37Z -
dc.date.created 2014-08-28 -
dc.date.issued 2007-03 -
dc.description.abstract The carbothermal reduction of silica into silicon requires the use of temperatures well above the silicon melting point (≥2,000°C). Solid silicon has recently been generated directly from silica at much lower temperatures (≤850°C) via electrochemical reduction in molten salts. However, the silicon products of such electrochemical reduction did not retain the microscale morphology of the starting silica reactants. Here we demonstrate a low-temperature (650°C) magnesiothermic reduction process for converting three-dimensional nanostructured silica micro-assemblies into microporous nanocrystalline silicon replicas. The intricate nanostructured silica microshells (frustules) of diatoms (unicellular algae) were converted into co-continuous, nanocrystalline mixtures of silicon and magnesia by reaction with magnesium gas. Selective magnesia dissolution then yielded an interconnected network of silicon nanocrystals that retained the starting three-dimensional frustule morphology. The silicon replicas possessed a high specific surface area (>500 m2 g-1), and contained a significant population of micropores (≤20 A). The silicon replicas were photoluminescent, and exhibited rapid changes in impedance upon exposure to gaseous nitric oxide (suggesting a possible application in microscale gas sensing). This process enables the syntheses of microporous nanocrystalline silicon micro-assemblies with multifarious three-dimensional shapes inherited from biological or synthetic silica templates for sensor, electronic, optical or biomedical applications. -
dc.identifier.bibliographicCitation NATURE, v.446, no.7132, pp.172 - 175 -
dc.identifier.doi 10.1038/nature05570 -
dc.identifier.issn 0028-0836 -
dc.identifier.scopusid 2-s2.0-33947099047 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/5742 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33947099047 -
dc.identifier.wosid 000244718100037 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas -
dc.type Article -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus POROUS SILICON -
dc.subject.keywordPlus GAS SENSOR -
dc.subject.keywordPlus VAPOR -
dc.subject.keywordPlus EMISSION -
dc.subject.keywordPlus DIOXIDE -
dc.subject.keywordPlus WATER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.