File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조한희

Cho, Han-Hee
Optoelectronic Nanomaterials Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Effect of Incorporated Nitrogens on the Planarity and Photovoltaic Performance of Donor-Acceptor Copolymers

Author(s)
Cho, Han-HeeKang, Tae EuiKim, Ki-HyunKang, HyunbumKim, Hyeong JunKim, Bumjoon J.
Issued Date
2012-08
DOI
10.1021/ma301362t
URI
https://scholarworks.unist.ac.kr/handle/201301/57345
Citation
MACROMOLECULES, v.45, no.16, pp.6415 - 6423
Abstract
Systematic control of the chemical structure of conjugated polymers is critically important to elucidate the relationship between the conjugated polymer structures and properties and to optimize their performance in bulk heterojunction (BHJ) polymer solar cell (PSC) devices. Herein, we synthesized three new copolymers, i.e., P0, P1, and P2; these copolymers contain the same benzodithiophene donor unit but have different acceptor units with different numbers of nitrogen atoms in the range of 0-2. The effects of the introduced nitrogen atoms on the structural, optical, electrical, and photovoltaic properties of the conjugated polymers were investigated; the structural properties of the polymers, in particular, were studied using both experimental (grazing-incidence X-ray scattering (GIXS) measurements) and computational methods (molecular simulation). As the number of introduced nitrogen atoms increased, the planarity of the main chain conformation increased in the order of P0 < P1 < P2 Additionally, the P0, P1, and P2 polymers showed increased interlayer domain spacings of 1.61, 1.72, and 1.78 nm, respectively, with increased intermolecular ordering. These results were in excellent agreement with the simulation results. In addition, the enhanced planarity resulted in a red-shifting at the onset of absorption in the polymer film from 544 to 585 nm, a downshift in the lowest unoccupied molecular orbital (LUMO) energy level from -3.02 to -3.26 eV, and an increase in the hole mobility from 2.33 X 10(-6) to 3.78 x 10(-5) cm(2)/(V s). As a result, we observed dramatically enhanced performance of the PSCs in the order of P0 < P1 < P2. For example, the P2:PC61BM device exhibited a 3.5-fold improvement in power conversion efficiency (PCE) compared to that of P0:PC61BM. The further optimization of P2 with PC71BM showed the PCE of 3.22%.
Publisher
AMER CHEMICAL SOC
ISSN
0024-9297
Keyword
LOW-BANDGAP POLYMERSCHARGE-TRANSPORTGAP POLYMERSBENZODITHIOPHENEPOLYSQUARAINESCHAINSSERIESUNITSAREA

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.