File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

BielawskiChristopher W

Bielawski, Christopher W.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Covalently Grafting Sulfur-Containing Polymers to Carbon Nanotubes Enhances the Electrochemical Performance of Sulfur Cathodes

Alternative Title
This work was supported by the National Natural Science Foundation of China (51773211 and 21961160700), the Beijing Municipal Science & Technology Commission, the IBS (IBS-R019-D1), and the State Key Laboratory of OrganicInorganic Composites (oic-202101002).
Author(s)
Wang, YulinLuo, ZhiboZhou, JiFan, XueyingZhang, JieJia, YuncanChen, ShangMeng, XiaodongBielawski, Christopher W.Geng, Jianxin
Issued Date
2022-02
DOI
10.1021/acsapm.1c01398
URI
https://scholarworks.unist.ac.kr/handle/201301/57181
Fulltext
https://pubs.acs.org/doi/10.1021/acsapm.1c01398
Citation
ACS APPLIED POLYMER MATERIALS, v.4, no.2, pp.939 - 949
Abstract
Lithium-sulfur (Li-S) batteries have attracted extensive attention due to the high theoretical specific capacity of sulfur (1675 mA h g(-1)). Despite the advantage, the utility of Li-S batteries is limited by the low electrical conductivities of sulfur and its discharge products (i.e., Li2S2 and Li2S) as well as the "shuttle effect" of polysulfides. Herein, a strategy of covalently grafting sulfur-containing polymers to carbon nanotubes (CNTs) is proposed as a solution to the problems associated with sulfur cathodes. The sulfur-containing polymers are grafted to the CNTs using an "inverse vulcanization" method, wherein elemental sulfur is reacted with CNTs that are previously functionalized with isopropenyl groups. A morphological study of the resulting composite indicates that the material maintains the one-dimensional characteristic of CNTs and effectively establishes a porous network via overlap. Such structural features are found to facilitate electron transport in the composite and also suppress the shuttle effect of polysulfides. When compared to cells that are prepared from elemental sulfur, devices that contain the composite show improved specific capacity (i.e., 1368 mA h g(-1) at 0.05 C) and a suppressed capacity fading rate (i.e., 0.074% per cycle at 1 C over 500 cycles). In a broader context, covalently attaching sulfurcontaining polymers to CNTs provides design criteria for realizing cathode materials that may be employed in high-performance Li-S batteries.
Publisher
AMER CHEMICAL SOC
ISSN
2637-6105
Keyword (Author)
sulfur-containing polymercovalent graftingcarbon nanotubes (CNTs)lithium-sulfur batteriessulfur cathodes
Keyword
ELEMENTAL-SULFURPOROUS CARBONLITHIUMCONVERSIONIMMOBILIZATIONPOLYSULFIDESHOSTSFILMS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.