File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권태혁

Kwon, Tae-Hyuk
Energy Recognition Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 61609 -
dc.citation.number 51 -
dc.citation.startPage 61598 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 13 -
dc.contributor.author Roh, Deok-Ho -
dc.contributor.author Shin, HyeonOh -
dc.contributor.author Kim, Hyun-Tak -
dc.contributor.author Kwon, Tae-Hyuk -
dc.date.accessioned 2023-12-21T14:47:58Z -
dc.date.available 2023-12-21T14:47:58Z -
dc.date.created 2022-01-14 -
dc.date.issued 2021-12 -
dc.description.abstract Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and crosslinked microporous structures. However, the fabrication of nanoand microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution. Using the SNS, the scalable fabrication of microporous and redox-active CMP films can be achieved via the oxidative C-C coupling polymerization of the monomer precursor. Intriguingly, the ultrasonic frequency used during SNS strongly affects the synthesis of the CMP films, resulting in an approximately 30% improvement in reaction yields and ca. 1.3-1.7-times enhanced surface areas (336-542 m(2)/g) at a high ultrasonic frequency of 180 kHz compared to those at 120 kHz. Furthermore, we prepare highly conductive, three-dimensional porous electrodes [CMP/carbon nanotube (CNT)] by a layerby-layer sequential deposition of CMP films and CNTs via SNS. Finally, an asymmetric supercapacitor comprising the CMP/CNT cathode and carbon anode shows a high specific capacitance of 477 F/g at 1 A/g with a wide working potential window (0-1.4 V) and robust cycling stability, exhibiting 94.4% retention after 10,000 cycles. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.13, no.51, pp.61598 - 61609 -
dc.identifier.doi 10.1021/acsami.1c13755 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85121923445 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/56889 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.1c13755 -
dc.identifier.wosid 000734475100001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Sono-Cavitation and Nebulization-Based Synthesis of Conjugated Microporous Polymers for Energy Storage Applications -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor carbon nanotubes -
dc.subject.keywordAuthor layer-by-layer structure -
dc.subject.keywordAuthor energy storage materials -
dc.subject.keywordAuthor supercapacitors -
dc.subject.keywordAuthor ultrasonic-assisted synthesis -
dc.subject.keywordAuthor oxidative polymerization -
dc.subject.keywordAuthor conjugated microporous polymers -
dc.subject.keywordPlus COVALENT ORGANIC FRAMEWORK -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.subject.keywordPlus POLYMERIZATION -
dc.subject.keywordPlus ULTRASOUND -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus ROUTE -
dc.subject.keywordPlus FILM -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.