File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3051 -
dc.citation.number 9 -
dc.citation.startPage 3040 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 7 -
dc.contributor.author Nguyen, Thanh Luan -
dc.contributor.author Choi, Hyosung -
dc.contributor.author Ko, Seojin -
dc.contributor.author Uddin, Mohammad Afsar -
dc.contributor.author Walker, Bright -
dc.contributor.author Yum, Seungjib -
dc.contributor.author Jeong, J.E. -
dc.contributor.author Yun, M.H. -
dc.contributor.author Shin, Tae Joo -
dc.contributor.author Hwang, Seongyeon -
dc.contributor.author Kim, Jin Young -
dc.contributor.author Woo, Hanyoung -
dc.date.accessioned 2023-12-22T02:13:38Z -
dc.date.available 2023-12-22T02:13:38Z -
dc.date.created 2014-09-03 -
dc.date.issued 2014-09 -
dc.description.abstract We report a series of semi-crystalline, low band gap (LBG) polymers and demonstrate the fabrication of highly efficient polymer solar cells (PSCs) in a thick single-cell architecture. The devices achieve a power conversion efficiency (PCE) of over 7% without any post-treatment (annealing, solvent additive, etc.) and outstanding long-term thermal stability for 200 h at 130 °C. These excellent characteristics are closely related to the molecular structures where intra- and/or intermolecular noncovalent hydrogen bonds and dipole-dipole interactions assure strong interchain interactions without losing solution processability. The semi-crystalline polymers form a well-distributed nano-fibrillar networked morphology with PC70BM with balanced hole and electron mobilities (a h/e mobility ratio of 1-2) and tight interchain packing (a π-π stacking distance of 3.57-3.59 A) in the blend films. Furthermore, the device optimization with a processing additive and methanol treatment improves efficiencies up to 9.39% in a ∼300 nm thick conventional single-cell device structure. The thick active layer in the PPDT2FBT:PC 70BM device attenuates incident light almost completely without damage in the fill factor (0.71-0.73), showing a high short-circuit current density of 15.7-16.3 mA cm-2. Notably, PPDT2FBT showed negligible changes in the carrier mobility even at ∼1 μm film thickness. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.7, no.9, pp.3040 - 3051 -
dc.identifier.doi 10.1039/c4ee01529k -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84906243487 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/5602 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84906243487 -
dc.identifier.wosid 000340450100022 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.