File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

장지현

Jang, Ji-Hyun
Structures & Sustainable Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 760 -
dc.citation.number 1 -
dc.citation.startPage 750 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 14 -
dc.contributor.author Song, Gyujin -
dc.contributor.author Lee, June Ho -
dc.contributor.author Lee, Sangyeop -
dc.contributor.author Han, Dong-Yeob -
dc.contributor.author Choi, Sungho -
dc.contributor.author Kwak, Myung-Jun -
dc.contributor.author Jang, Ji-Hyun -
dc.contributor.author Lee, Donghwa -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T14:43:02Z -
dc.date.available 2023-12-21T14:43:02Z -
dc.date.created 2022-01-05 -
dc.date.issued 2022-01 -
dc.description.abstract The ability to realize a highly capacitive/conductive electrode is an essential factor in large-scale devices, requiring a high-power/energy density system. Germanium is a feasible candidate as an anode material of lithium-ion batteries to meet the demands. However, the application is constrained due to low charge conductivity and large volume change on cycles. Here, we design a hybrid conductive shell of multi-component titanium oxide on a germanium microstructure. The shell enables facile hybrid ionic/electronic conductivity for swift charge mobility in the germanium anode, revealed through computational calculation and consecutive measurement of electrochemical impedance spectroscopy. Furthermore, a well-constructed electrode features a high initial Coulombic efficiency (90.6%) and stable cycle life for 800 cycles (capacity retention of 90.4%) for a fast-charging system. The stress-resilient properties of dense microparticle facilitate to alleviate structural failure toward high volumetric (up to 1737 W h L–1) and power density (767 W h L–1 at 7280 W L–1) of full cells, paired with highly loaded NCM811 in practical application. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.14, no.1, pp.750 - 760 -
dc.identifier.doi 10.1021/acsami.1c18607 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85122581214 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/55878 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.1c18607 -
dc.identifier.wosid 000736578100001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Highly Stable Germanium Microparticle Anodes with a Hybrid Conductive Shell for High Volumetric and Fast Lithium Storage -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology;Materials Science, Multidisciplinary -
dc.relation.journalResearchArea science & Technology - Other Topics;Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor hybrid conductivity -
dc.subject.keywordAuthor sequential reduction reaction -
dc.subject.keywordAuthor core-shell structure -
dc.subject.keywordAuthor germanium microparticle -
dc.subject.keywordAuthor fast charging -
dc.subject.keywordAuthor volumetric energy density -
dc.subject.keywordPlus ION BATTERIES -
dc.subject.keywordPlus METALLOTHERMIC REDUCTION -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus COMPOSITE -
dc.subject.keywordPlus GRAPHITE -
dc.subject.keywordPlus STRAIN -
dc.subject.keywordPlus CARBON -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.