File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김태성

Kim, Taesung
Microfluidics & Nanomechatronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours

Author(s)
Kim, TaesungKao, Ming-TseMeyhofer, EdgarHasselbrink, Ernest F.
Issued Date
2007-01
DOI
10.1088/0957-4484/18/2/025101
URI
https://scholarworks.unist.ac.kr/handle/201301/5577
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33846827233
Citation
NANOTECHNOLOGY, v.18, no.2, pp.1 - 9
Abstract
We suggest a concept for powering microfluidic devices with biomolecular motors and microtubules to meet the demands for highly efficient microfluidic devices. However, to successfully implement such devices, we require methods for active control over the direction of microtubule translocation. While most previous work has employed largely microfabricated passive mechanical patterns designed to guide the direction of microtubules, in this paper we demonstrate that hydrodynamic shear flow can be used to align microtubules translocating on a kinesin-coated surface in a direction parallel to the fluid flow. Our evidence supports the hypothesis that the mechanism of microtubule redirection is simply that drag force induced by viscous shear bends the leading end of a microtubule, which may be cantilevered beyond its kinesin supports. This cantilevered end deflects towards the flow direction, until it is subsequently bound to additional kinesins; as translocation continues, the process repeats until the microtubule is largely aligned with the flow, to a limit determined by random fluctuations created by thermal energy. We present statistics on the rate of microtubule alignment versus various strengths of shear flow as well as concentrations of kinesin, and also investigate the effects of shear flow on the motility.
Publisher
IOP PUBLISHING LTD
ISSN
0957-4484
Keyword
SINGLE KINESIN MOLECULESUNIDIRECTIONAL TRANSPORTCHANNELSARRAYSLOAD

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.