File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송명훈

Song, Myoung Hoon
Organic Photonics & Optoelectronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 46901 -
dc.citation.number 39 -
dc.citation.startPage 46894 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 13 -
dc.contributor.author Woo, Jeong-Hyun -
dc.contributor.author Koo, Donghwan -
dc.contributor.author Kim, Na-Hyang -
dc.contributor.author Kim, Hangeul -
dc.contributor.author Song, Myoung Hoon -
dc.contributor.author Park, Hyesung -
dc.contributor.author Kim, Ju-Young -
dc.date.accessioned 2023-12-21T15:10:52Z -
dc.date.available 2023-12-21T15:10:52Z -
dc.date.created 2021-11-11 -
dc.date.issued 2021-10 -
dc.description.abstract The lack of highly impermeable and highly flexible encapsulation materials is slowing the development of flexible organic solar cells. Here, a transparent and low-temperature synthetic alumina single layer is suggested as a highly impermeable and a highly flexible encapsulation material for organic solar cells. While the water vapor transmission rate (WVTR) is maintained up to 100,000 bending cycles for a 25 mm bending radius (corresponding to 8.1% of the elastic deformation limit), as measured by in situ tensile testing with free-standing 50 nm-thick alumina films, the WVTR degraded gradually depending on the bending radius and bending cycles for bending radii less than 25 mm. The degradation of the WVTR in cyclic deformation within the elastic deformation limit is investigated, and it is found to be due to the formation of pinholes by a bond-switching mechanism. Also, encapsulated organic solar cells with alumina films are found to maintain 80% of initial efficiency for 2 weeks even after cyclic bending with a 4 mm bending radius. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.13, no.39, pp.46894 - 46901 -
dc.identifier.doi 10.1021/acsami.1c15261 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85116627650 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54829 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.1c15261 -
dc.identifier.wosid 000706187100068 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Amorphous Alumina Film Robust under Cyclic Deformation: a Highly Impermeable and a Highly Flexible Encapsulation Material -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & NanotechnologyMaterials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other TopicsMaterials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor amorphous alumina thin film -
dc.subject.keywordAuthor plasma-enhanced ALD -
dc.subject.keywordAuthor encapsulation -
dc.subject.keywordAuthor pinhole -
dc.subject.keywordAuthor elastic deformation limit -
dc.subject.keywordPlus ULTRA-THIN -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus AL2O3 -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus WATER -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus ATOMIC LAYER DEPOSITION -
dc.subject.keywordPlus ORGANIC SOLAR-CELLS -
dc.subject.keywordPlus MOISTURE BARRIER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.