BROWSE

Related Researcher

Author

Cho, Kyung Hwa
Environmental Monitoring and Modeling Lab (EM2)
Research Interests
  • Water Quality Monitoring and Modeling, Water Treatment Process Modeling

ITEM VIEW & DOWNLOAD

Evaluation of a hydrology and run-off BMP model in SUSTAIN on a commercial area and a public park in South Korea

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Evaluation of a hydrology and run-off BMP model in SUSTAIN on a commercial area and a public park in South Korea
Author
Baek, Sang-SooChoi, Dong-HoJung, Jae-WoonYoon, Kwang-SikCho, Kyung Hwa
Keywords
Bioretention; BMP; Commercial area; Dry pond; Public park; Rainfall-run-off depth; Run-off; Run-off ratio; SUSTAIN; Wet pond
Issue Date
201507
Publisher
DESALINATION PUBL
Citation
DESALINATION AND WATER TREATMENT, v.55, no.2, pp.347 - 359
Abstract
Adapting best management practices (BMPs) is influenced by target reduction efficiency BMP size, and BMP type. The System for Urban Storm water Treatment and Analysis INtegration (SUSTAIN) model was evaluated to determine optimal size and type of BMP with monitoring results from a commercial area and a public park in Korea. The hydrology model in SUSTAIN was tested in a commercial area (impervious area: 85%) and a public park (impervious area: 36%) in South Korea. A sensitivity analysis revealed that the significant parameters for total flow were impervious area Manning's roughness (IMPN) and saturated hydraulic conductivity (HYDCON); and those for peak flow were IMPN, Manning's roughness of conduit (ROUGH) and HYDCON. The observed average run-off ratios of the two study sites were 0.59 and 0.30 for the commercial area and the public park, respectively. In contrast, the simulated average run-off ratios were 0.53 and 0.22, respectively. The SUSTAIN hydrology model was also evaluated statistically by comparing observed and simulated run-off. In a commercial area, R2, root mean square error, and Nash-Sutcliffe efficiency were 0.68, 10.98, and 0.46, respectively, whereas the public park yielded 0.74, 1.97, and 0.62, respectively. After calibrating the model, the BMP options of SUSTAIN (i.e. bioretention, dry pond, and wet pond) were utilized to test run-off reduction capability with 11 mm of retaining run-off depth from the commercial area and 3 mm from the public park. Monitoring data showed that 11 and 3 mm run-off storage ensured about a 50% reduction of run-off from the commercial area and the public park, respectively. In the commercial area, average reduction rates were identically all 43.0% for bioretention, dry pond, and wet pond, respectively, and those for the public park were 49.6, 57.6, and 53.5%, respectively. Overall, the BMP function of SUSTAIN seemed to be reasonable for reducing run-off and could be used to design BMP to meet a target reduction goal where monitoring data does not exist.
URI
Go to Link
DOI
http://dx.doi.org/10.1080/19443994.2014.939502
ISSN
1944-3994
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU