BROWSE

Related Researcher

Author

Yoo, Chun Sang
Combustion & Propulsion Lab
Research Interests
  • Numerical turbulent combustion

ITEM VIEW & DOWNLOAD

A DNS study of self-accelerating cylindrical hydrogen-air flames with detailed chemistry

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
A DNS study of self-accelerating cylindrical hydrogen-air flames with detailed chemistry
Author
Xin, Y.X.Yoo, Chun SangChen, J.H.Law, C.K.
Keywords
ndrical flame; Hydrodynamic instability; Hydrogen-air flames; Self-acceleration
Issue Date
201501
Publisher
ELSEVIER SCIENCE INC
Citation
PROCEEDINGS OF THE COMBUSTION INSTITUTE, v.35, no.1, pp.753 - 760
Abstract
The self-accelerating expanding cylindrical stoichiometric hydrogen-air flames at eight atmospheres were studied via two-dimensional direct numerical simulation (DNS) of the full compressible Navier-Stokes equations with detailed chemistry. The flame morphology and propagation were finely resolved by the application of a time step of 2.5 ns and a grid size of 4 μm. Temporally, the intermittent propagation of the flame front is captured through examining its propagation velocity. Spatially, the flame front is found to be comprised of segments exhibiting similar propagation properties, i.e. the intermittent instantaneous propagation of the flame front is attributed to the development of cellular structures induced by hydrodynamic instability. The long-term average propagation velocity of the flame front is described by a power law, with a self-acceleration exponent of 1.22 for the flame radius with respect to time. The increase in the global flame velocity is shown to be primarily a consequence of increased flame surface area, with the local front propagation velocity remaining largely at the constant laminar flame speed for the near-unity Lewis number mixture studied herein.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.proci.2014.06.076
ISSN
1540-7489
Appears in Collections:
MNE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU