File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정성균

Jung, Sung-Kyun
Energy Materials Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3335 -
dc.citation.number 11 -
dc.citation.startPage 3325 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 8 -
dc.contributor.author Kim, Hyungsub -
dc.contributor.author Yoon, Gabin -
dc.contributor.author Park, Inchul -
dc.contributor.author Park, Kyu-Young -
dc.contributor.author Lee, Byungju -
dc.contributor.author Kim, Jongsoon -
dc.contributor.author Park, Young-Uk -
dc.contributor.author Jung, Sung-Kyun -
dc.contributor.author Lim, Hee-Dae -
dc.contributor.author Ahn, Docheon -
dc.contributor.author Lee, Seongsu -
dc.contributor.author Kang, Kisuk -
dc.date.accessioned 2023-12-22T00:36:34Z -
dc.date.available 2023-12-22T00:36:34Z -
dc.date.created 2021-06-03 -
dc.date.issued 2015-11 -
dc.description.abstract We report a 3.8 V manganese-based mixed-phosphate cathode material for applications in sodium rechargeable batteries; i.e., Na4Mn3(PO4)(2)(P2O7). This material exhibits a largest Mn2+/Mn3+ redox potential of 3.84 V vs. Na+/Na yet reported for a manganese-based cathode, together with the largest energy density of 416 W h kg (1). We describe first-principles calculations and experimental results which show that three-dimensional Na diffusion pathways with low-activation-energy barriers enable the rapid sodium insertion and extraction at various states of charge of the Na4-xMn3(PO4)(2)(P2O7) electrode (where x = 0, 1, 3). Furthermore, we show that the sodium ion mobility in this crystal structure is not decreased by the structural changes induced by Jahn-Teller distortion (Mn3+), in contrast to most manganese-based electrodes, rather it is increased due to distortion, which opens up sodium diffusion channels. This feature stabilizes the material, providing high cycle stability and high power performance for sodium rechargeable batteries. The high voltage, large energy density, cycle stability and the use of low-cost Mn give Na4Mn3(PO4)(2)(P2O7) significant potential for applications as a cathode material for large-scale Na-ion batteries. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.8, no.11, pp.3325 - 3335 -
dc.identifier.doi 10.1039/c5ee01876e -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84946104472 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53092 -
dc.identifier.wosid 000364324500026 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus IRON PYROPHOSPHATE -
dc.subject.keywordPlus SUPERIOR CATHODE -
dc.subject.keywordPlus PRUSSIAN BLUE -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus MECHANISM -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.