BROWSE

Related Researcher

Author

Yoo, Chun Sang
Combustion & Propulsion Lab
Research Interests
  • Numerical turbulent combustion

ITEM VIEW & DOWNLOAD

Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature

Cited 1 times inthomson ciCited 0 times inthomson ci
Title
Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature
Author
Luong, Minh BauLu, TianfengChung, Suk HoYoo, Chun Sang
Keywords
DNS; Homogeneous charge compression ignition (HCCI); Stratified charge compression ignition (SCCI); Biodiesel; Chemical explosive mode analysis (CEMA
Issue Date
201411
Publisher
ELSEVIER SCIENCE INC
Citation
COMBUSTION AND FLAME, v.161, no.11, pp.2878 - 2889
Abstract
The effects of the stratifications of temperature, T, and equivalence ratio, φ{symbol}, on the ignition characteristics of a lean homogeneous biodiesel/air mixture at high pressure and intermediate temperature are investigated using direct numerical simulations (DNSs). 2-D DNSs are performed at a constant volume with the variance of temperature and equivalence ratio (T′ and φ{symbol}′) together with a 2-D isotropic velocity spectrum superimposed on the initial scalar fields. In addition, three different T s(-) φ{symbol} correlations are investigated: (1) baseline cases with T′ only or φ{symbol}′ only, (2) uncorrelated T s(-) φ{symbol} distribution, and (3) negatively-correlated T s(-) φ{symbol} distribution. It is found that the overall combustion is more advanced and the mean heat release rate is more distributed over time with increasing T′ and/or φ{symbol}′ for the baseline and uncorrelated T s(-) φ{symbol} cases. However, the temporal advancement and distribution of the overall combustion caused by T′ or φ{symbol}′ only are nearly annihilated by the negatively-correlated T s(-) φ{symbol} fields. The chemical explosive mode and Damkohler number analyses verify that for the baseline and uncorrelated T s(-) φ{symbol} cases, the deflagration mode is predominant at the reaction fronts for large T′ and/or φ{symbol}′. On the contrary, the spontaneous ignition mode prevails for cases with small T′ or φ{symbol}′, especially for cases with negative T s(-) φ{symbol} correlations, and hence, simultaneous auto-ignition occurs throughout the entire domain, resulting in an excessive rate of heat release. It is also found that turbulence with large intensity, u′, and a short time scale can effectively smooth out initial thermal and compositional fluctuations such that the overall combustion is induced primarily by spontaneous ignition. Based on the present DNS results, the generalization of the effects of T′, φ{symbol}′, and u′ on the HCCI combustion is made to clarify each effect. These results suggest that temperature and composition stratifications together with a well-designed T s(-) φ{symbol} correlation can alleviate an excessive rate of pressure rise and control the ignition-timing in homogeneous charge compression-ignition (HCCI) combustion.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.combustflame.2014.05.004
ISSN
0010-2180
Appears in Collections:
MNE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU