File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 34 -
dc.citation.startPage 2001944 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 32 -
dc.contributor.author Hwang, Jaeseong -
dc.contributor.author Myeong, Seungjun -
dc.contributor.author Jin, Wooyoung -
dc.contributor.author Jang, Haeseong -
dc.contributor.author Nam, Gyutae -
dc.contributor.author Yoon, Moonsu -
dc.contributor.author Kim, Su Hwan -
dc.contributor.author Joo, Se Hun -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Kim, Min Gyu -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T17:09:20Z -
dc.date.available 2023-12-21T17:09:20Z -
dc.date.created 2020-09-16 -
dc.date.issued 2020-08 -
dc.description.abstract Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li+) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use. Herein, the structural origin of this chemical irreversibility is revealed through a comparative study involving Li(1.15)Mn(0.51)Co(0.17)Ni(0.17)O(2)with relatively localized and delocalized excess-Li in its lattice system. Operando fine-interval X-ray absorption spectroscopy is used to simultaneously observe the interplay between transition-metal-oxygen (TM-O) redox chemistry and TM migration behavior in real time. Density functional theory calculations show that excess-Li localization in the LMR structure attenuates TM-O covalency and stability, leading to overall chemical irreversibility. Hence, the delocalized excess-Li system is proposed as an alternative design for practically feasible LMR cathodes with restrained TM migration and sustainable O-redox chemistry. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.32, no.34, pp.2001944 -
dc.identifier.doi 10.1002/adma.202001944 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85087745802 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48600 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202001944 -
dc.identifier.wosid 000565471900025 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor chemical irreversibility -
dc.subject.keywordAuthor excess-Li localization -
dc.subject.keywordAuthor Li- and Mn-rich layered oxide -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor oxygen stability -
dc.subject.keywordPlus LI1.2NI0.2MN0.6O2 -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus ANIONIC REDOX ACTIVITY -
dc.subject.keywordPlus CATHODE MATERIALS -
dc.subject.keywordPlus PHASE-TRANSFORMATION -
dc.subject.keywordPlus METAL-OXIDES -
dc.subject.keywordPlus SPINEL PHASE -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus BATTERY -
dc.subject.keywordPlus LI2MNO3 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.