File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Backward Reachability Analysis for Nonlinear Dynamical Systems via Pseudospectral Method

Author(s)
Lee, Myoung HoonMoon, Jun
Issued Date
2021-02
DOI
10.1007/s12555-019-0705-1
URI
https://scholarworks.unist.ac.kr/handle/201301/48305
Fulltext
https://link.springer.com/article/10.1007/s12555-019-0705-1
Citation
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, v.19, no.2, pp.575 - 586
Abstract
In this paper, we propose a new approach to solving the backward reachability problem for nonlinear dynamical systems. Previously, this class of problems has been studied within frameworks of optimal control and zero-sum differential games, where a backward reachable set can be expressed as the zero sublevel set of the value function that can be characterized by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). In many cases, however, a high computational cost is incurred in numerically solving such HJB PDEs due to the curse of dimensionality. We use the pseudospectral method to convert the associated optimal control problem into nonlinear programs (NLPs). We then show that the zero sublevel set obtained by the optimal cost of the NLP is the corresponding backward reachable set. Note that our approach does not require solving complex HJB PDEs. Therefore, it can reduce computation time and handle high-dimensional dynamical systems, compared with the numerical software package developed by I. Mitchell, which has been used widely in the literature to obtain backward reachable sets by solving HJB equations. We provide several examples to validate the effectiveness of the proposed approach.
Publisher
INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS
ISSN
1598-6446
Keyword (Author)
Backward reachable setnonlinear programmingoptimal controlpseudospectral method
Keyword
SETOPTIMIZATIONCONVERGENCECONTROLLERSALGORITHM

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.