File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

차채녕

Cha, Chaenyung
Integrative Biomaterials Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Dual-functional alginate crosslinker: Independent control of crosslinking density and cell adhesive properties of hydrogels via separate conjugation pathways

Author(s)
Choi, CholongKim, SuntaeCha, Chaenyung
Issued Date
2021-01
DOI
10.1016/j.carbpol.2020.117128
URI
https://scholarworks.unist.ac.kr/handle/201301/48179
Fulltext
https://www.sciencedirect.com/science/article/pii/S0144861720313011?via%3Dihub
Citation
CARBOHYDRATE POLYMERS, v.252, pp.117128
Abstract
Alginate is an abundant natural polysaccharide widely utilized in various biomedical applications. Alginate also possesses numerous hydroxyl and carboxylate functional groups that allow chemical modifications to introduce different functionalities. However, it is difficult to apply various chemical reactions to alginate due to limited solubility in organic solvents. Herein, functional moieties for radical polymerization and cell adhesion were separately conjugated to hydroxyl and carboxylate groups of alginate, respectively, in order to independently control the crosslinking density and cell adhesive properties of hydrogels. Sodium counterions of alginate are first substituted with tetrabutylammonium ions to facilitate the dissolution in an organic solvent, followed by in situ conjugations of (1) cell adhesion molecules (CAM) via carbodiimide-mediated amide formation and (2) methacrylate via ring-opening nucleophilic reaction. The resulting CAM-linked methacrylic alginate was able to not only crosslink different monomers to form hydrogels with varying mechanical properties, but also induce stable cell adhesion to the hydrogels.
Publisher
ELSEVIER SCI LTD
ISSN
0144-8617
Keyword (Author)
Tetrabutylammonium alginateCell adhesion moleculeMethacrylateHydrogelMechanics

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.