File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Ligase Detection Reaction Generation of Reverse Molecular Beacons for Near Real-Time Analysis of Bacterial Pathogens Using Single-Pair Fluorescence Resonance Energy Transfer and a Cyclic Olefin Copolymer Microfluidic Chip

Author(s)
Peng, ZhiyongSoper, Steven A.Pingle, Maneesh R.Barany, FrancisDavis, Lloyd M.
Issued Date
2010-12
DOI
10.1021/ac101843n
URI
https://scholarworks.unist.ac.kr/handle/201301/4489
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78649701493
Citation
ANALYTICAL CHEMISTRY, v.82, no.23, pp.9727 - 9735
Abstract
Detection of pathogenic bacteria and viruses require strategies that can signal the presence of these targets in near real-time due to the potential threats created by rapid dissemination into water and/or food supplies In this paper, we report an innovative strategy that can rapidly detect bacterial pathogens using reporter sequences found in their genome without requiring polymerase chain reaction (PCR) A pair of strain-specific primers was designed based on the 168 rRNA gene and were end-labeled with a donor (Cy5) or acceptor (Cy5 5) dye In the presence of the target bacterium, the primers were joined using a ligase detection reaction (LDR) only when the primers were completely complementary to the target sequence to form a reverse molecular beacon (rMB), thus bringing Cy5 (donor) and Cy5 5 (acceptor) into close proximity to allow fluorescence resonance energy transfer (FRET) to occur These rMBs were subsequently analyzed using single molecule detection of the FRET pairs (single-pair FRET, spFRET) The LDR was performed using a continuous flow thermal cycling process configured in a cyclic olefin copolymer (COC) microfluidic device using either 2 or 20 thermal cycles Single molecule photon bursts from the resulting rMBs were detected on chip and registered using a simple laser-induced fluorescence (LIF) instrument. The spFRET signatures from the target pathogens were reported in as little as 2 6 mm using spFRET.
Publisher
AMER CHEMICAL SOC
ISSN
0003-2700

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.