BROWSE

Related Researcher

Author

Kim, Jaai
School of Urban and Environmental Engineering
Research Interests

ITEM VIEW & DOWNLOAD

Effect of mild-temperature H O-2 (2) oxidation on solubilization and anaerobic digestion of waste activated sludge

Cited 1 times inthomson ciCited 0 times inthomson ci
Title
Effect of mild-temperature H O-2 (2) oxidation on solubilization and anaerobic digestion of waste activated sludge
Author
Jung, HeejungKim, JaaiLee, SeungyongLee, Changsoo
Keywords
Anaerobic digestion; Pretreatment; Response surface analysis; Waste activated sludge
Issue Date
201407
Publisher
TAYLOR & FRANCIS LTD
Citation
ENVIRONMENTAL TECHNOLOGY, v.35, no.13, pp.1702 - 1709
Abstract
Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H 2O 2 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H 2O 2 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60-90°C and 0-200 mM H 2O 2. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2>0.95, p<0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H 2O 2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H 2O 2 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0°C, 74.2 mM H 2O 2).
URI
Go to Link
DOI
http://dx.doi.org/10.1080/09593330.2014.880517
ISSN
0959-3330
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU