BROWSE

Related Researcher

Author

UNIST, Researcher
UNIST
Research Interests
  • All Subjects

ITEM VIEW & DOWNLOAD

Efficiency enhancement of dye-sensitized solar cells by the addition of an oxidizing agent to the TiO2 paste

Cited 1 times inthomson ciCited 1 times inthomson ci
Title
Efficiency enhancement of dye-sensitized solar cells by the addition of an oxidizing agent to the TiO2 paste
Author
Ko, Kwan-WooLee, MinohSekhon S.S.Balasingam, Suresh KannanHan, Chi-HwanJun, Yongseok
Keywords
dyes/pigments; oxidation; solar cells; surface chemistry; titanium oxide
Issue Date
201311
Publisher
WILEY-V C H VERLAG GMBH
Citation
CHEMSUSCHEM, v.6, no.11, pp.2117 - 2123
Abstract
The addition of various amounts of a strong oxidizing agent (3,5-dinitrosalicyclic acid, DNSA) to TiO2 paste enhances the solar-to-electrical-energy conversion efficiency of the corresponding dye-sensitized solar cells (DSSCs). Maximum performance was obtained from a device that was fabricated by using a TiO2 paste with 2wt % DNSA, which showed a short-circuit current density of 17.88mA cm-2, an open-circuit voltage of 0.78V, and an overall conversion efficiency of 9.62 %, which was an improvement in comparison to reference cells without DNSA. This improvement was rationalized in terms of the amount of residual carbon (formed due to the oxidation of binders) remaining on the TiO2 surface. Addition of a larger amount of oxidizing agent led to a smaller amount of residual carbon on the TiO2 surface. This smaller amount of residual carbon enhanced the adsorption of a larger number of dye molecules on the TiO2 surface. The addition of an oxidizing agent facilitated the removal of more residual organic species during the high-temperature calcination process while causing no change in the surface morphology and microstructure of the TiO2 film. Cut and paste Addition of a strong oxidizing agent (3,5-dinitrosalicylic acid) to the TiO2 paste facilitates the exothermic burning of organic binders during the high temperature calcination process, resulting in smaller amounts of residual carbon. This reduced carbon content facilitates the adsorption of more dye molecules on the TiO2 surface and results in a higher efficiency of the cell.
URI
Go to Link
DOI
http://dx.doi.org/10.1002/cssc.201300280
ISSN
1864-5631
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU