File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

최남순

Choi, Nam-Soon
Energy Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 212 -
dc.citation.number 2 -
dc.citation.startPage 206 -
dc.citation.title ADVANCED ENERGY MATERIALS -
dc.citation.volume 3 -
dc.contributor.author Park, Yuwon -
dc.contributor.author Choi, Nam-Soon -
dc.contributor.author Park, Sangjin -
dc.contributor.author Woo, Seung Hee -
dc.contributor.author Sim, Soojin -
dc.contributor.author Jang, Bo Yun -
dc.contributor.author Oh, Seung M. -
dc.contributor.author Park, Soojin -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Lee, Kyu Tae -
dc.date.accessioned 2023-12-22T04:13:52Z -
dc.date.available 2023-12-22T04:13:52Z -
dc.date.created 2013-06-05 -
dc.date.issued 2013-02 -
dc.description.abstract Remarkable improvements in the electrochemical performance of Si materials for Li-ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si-encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si-based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 approximate to 40 m), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si-encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g1. -
dc.identifier.bibliographicCitation ADVANCED ENERGY MATERIALS, v.3, no.2, pp.206 - 212 -
dc.identifier.doi 10.1002/aenm.201200389 -
dc.identifier.issn 1614-6832 -
dc.identifier.scopusid 2-s2.0-84876512734 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/3935 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84876512734 -
dc.identifier.wosid 000314654500011 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries -
dc.type Article -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor electroless etching -
dc.subject.keywordAuthor electrode thickness -
dc.subject.keywordAuthor hollow carbon -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor Si anode -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.