File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 540 -
dc.citation.startPage 533 -
dc.citation.title JOURNAL OF POWER SOURCES -
dc.citation.volume 242 -
dc.contributor.author Kim, Jeong-Hoon -
dc.contributor.author Kim, Jung-Hwan -
dc.contributor.author Choi, Eun-Sun -
dc.contributor.author Yu, Hyung Kyun -
dc.contributor.author Kim, Jong Hun -
dc.contributor.author Wu, Qinglin -
dc.contributor.author Chun, Sang-Jin -
dc.contributor.author Lee, Sun-Young -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-22T03:15:39Z -
dc.date.available 2023-12-22T03:15:39Z -
dc.date.created 2013-08-20 -
dc.date.issued 2013-11 -
dc.description.abstract Porous structure-tuned cellulose nanofiber paper separators (designated as S-CNP separators) are demonstrated as a promising alternative to commercial polyolefin separators for use in lithium-ion batteries. A new architectural strategy based on colloidal silica (SiO2) nanoparticle-assisted structural control is presented to overcome the difficulty in forming controllable porous structure of pure cellulose nanofiber paper separators (designated as CNP separators) from densely-packed cellulose nanofibers (CNFs). The new S-CNP separators proposed herein incorporate SiO2 nanoparticles as a CNF-disassembling agent (i.e., as non-conductive spacer particles). This structural uniqueness allows loose packing of CNFs, thereby facilitating the evolution of more porous structure. The unusual porous structure of S-CNP separators can be fine-tuned by varying SiO2 contents in the CNF suspension. Notably, the S-CNP separator (fabricated with 5 wt.% SiO2 content) exhibits the highest ionic conduction due to the well-balanced combination of nanoporous structure and separator thickness, thus contributing to excellent cell performance. This study underlines that the colloidal SiO2 nanoparticle-directed structural tuning of CNPs offers a promising route for the fabrication of advanced paper separators with optimized attributes and functionality. -
dc.identifier.bibliographicCitation JOURNAL OF POWER SOURCES, v.242, pp.533 - 540 -
dc.identifier.doi 10.1016/j.jpowsour.2013.05.142 -
dc.identifier.issn 0378-7753 -
dc.identifier.scopusid 2-s2.0-84879374506 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/3891 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84879374506 -
dc.identifier.wosid 000323628100066 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE BV -
dc.title Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries -
dc.type Article -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Cellulose nanofiber papers -
dc.subject.keywordAuthor Colloidal silica nanoparticles -
dc.subject.keywordAuthor Lithium-ion batteries -
dc.subject.keywordAuthor Non-conductive spacer particles -
dc.subject.keywordAuthor Porous structure -
dc.subject.keywordAuthor Separators -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.