BROWSE

Related Researcher

Author

Im, Jungho
Intelligent Remote sensing and geospatial Information Systems (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Climate change

ITEM VIEW & DOWNLOAD

Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest

Cited 10 times inthomson ciCited 2 times inthomson ci
Title
Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
Author
Li, ManqiIm, JunghoBeier, Colin
Keywords
change detection; decision trees; forest type classification; random forest; remote sensing; support vector machines; topographic correction
Issue Date
201308
Publisher
BELLWETHER PUBL LTD
Citation
GISCIENCE & REMOTE SENSING, v.50, no.4, pp.361 - 384
Abstract
This research investigated three machine learning approaches - decision trees, random forest, and support vector machines - to classify local forest communities at the Huntington Wildlife Forest (HWF), located in the central Adirondack Mountains of New York State, and to identify forest type change over a 20-year period using multi-temporal Landsat satellite Thematic Mapper (TM) data. Because some forest species are sensitive to topographic characteristics, three terrain correction methods - C correction, statistical-empirical (SE) correction, and Variable Empirical Coefficient Algorithm (VECA) - were utilized to account for the topographic effects. Results show that the topographic correction slightly improved the classification accuracy although the improvement was not significant based on the McNemar test. Random forest and support vector machines produced higher classification accuracies than decision trees. Besides, random forest- and support vector machine-based multi-temporal classifications better reflected the forest type change seen in the reference data. In addition, topographic features such as elevation and aspect played important roles in characterizing the forest type changes.
URI
Go to Link
DOI
http://dx.doi.org/10.1080/15481603.2013.819161
ISSN
1548-1603
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU