BROWSE

Related Researcher

Author

Lah, Myoung Soo
Nanoporous Materials Lab
Research Interests
  • Metal-Organic Frameworks (MOFs)

ITEM VIEW & DOWNLOAD

Robust and Efficient Amide-Based Nonheme Manganese(III) Hydrocarbon Oxidation Catalysts: Substrate and Solvent Effects on Involvement and Partition of Multiple Active Oxidants

Cited 14 times inthomson ciCited 12 times inthomson ci
Title
Robust and Efficient Amide-Based Nonheme Manganese(III) Hydrocarbon Oxidation Catalysts: Substrate and Solvent Effects on Involvement and Partition of Multiple Active Oxidants
Author
Song, Young JooLee, Sun HwaPark, Hyun MinKim, Soo HyunGoo, Hyo GeunEom, Geun HeeLee, Ju HoonLah, Myoung SooKim, YoungmeeKim, Sung-JinLee, Ju EunLee, Hong-InKim, Cheal
Keywords
high-valent species; hydrocarbon oxidation; manganese; olefin epoxidation; solvent effects
Issue Date
201106
Publisher
WILEY-V C H VERLAG GMBH
Citation
CHEMISTRY-A EUROPEAN JOURNAL, v.17, no.26, pp.7336 - 7344
Abstract
Two new mononuclear nonheme manganese(III) complexes of tetradentate ligands containing two deprotonated amide moieties, [Mn-(bpc)Cl(H2O)] (1) and [Mn-(Me(2)bpb)Cl(H2O)]center dot CH3OH (2), were prepared and characterized. Complex 2 has also been characterized by X-ray crystallography. Magnetic measurements revealed that the complexes are high spin (S = 5/2) Mn-III species with typical magnetic moments of 4.76 and 4.95 mu(B), respectively. These nonheme Mn-III complexes efficiently catalyzed olefin epoxidation and alcohol oxidation upon treatment with MCPBA under mild experimental conditions. Olefin epoxidation by these catalysts is proposed to involve the multiple active oxidants Mn-V=O, Mn-IV=O, and MnIII-OO(O)CR. Evidence for this approach was derived from reactivity and Hammett studies, KIE (k(H)/k(D)) values, (H2O)-O-18-exchange experiments, and the use of peroxyphenylacetic acid as a mechanistic probe. In addition, it has been proposed that the participation of Mn-V=O, Mn-IV=O, and MnIII-OOR could be controlled by changing the substrate concentration, and that partitioning between heterolysis and homolysis of the O-O bond of a Mn-acylperoxo intermediate (Mn-OOC(O)R) might be significantly affected by the nature of solvent, and that the O-O bond of the Mn-OOC(O)R might proceed predominantly by heterolytic cleavage in protic solvent. Therefore, a discrete Mn-V=O intermediate appeared to be the dominant reactive species in protic solvents. Furthermore, we have observed close similarities between these nonheme Mn-III complex systems and Mn(saloph) catalysts previously reported, suggesting that this simultaneous operation of the three active oxidants might prevail in all the manganese-catalyzed olefin epoxidations, including Mn(salen), Mn(nonheme), and even Mn(porphyrin) complexes. This mechanism provides the greatest congruity with related oxidation reactions by using certain Mn complexes as catalysts.
URI
Go to Link
DOI
http://dx.doi.org/10.1002/chem.201003202
ISSN
0947-6539
Appears in Collections:
SNS_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU