File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신흥주

Shin, Heungjoo
Micro/Nano Integrated Systems Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 11742 -
dc.citation.number 23 -
dc.citation.startPage 11734 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 8 -
dc.contributor.author Purbia, Rahul -
dc.contributor.author Kwon, Yeong Min -
dc.contributor.author Kim, Hong-Dae -
dc.contributor.author Lee, Yun Sik -
dc.contributor.author Shin, Heungjoo -
dc.contributor.author Baik, Jeong Min -
dc.date.accessioned 2023-12-21T17:20:31Z -
dc.date.available 2023-12-21T17:20:31Z -
dc.date.created 2020-07-16 -
dc.date.issued 2020-06 -
dc.description.abstract To enable the sensitive and selective monitoring of NO(2)gas at low ppb concentrations, zero-dimensional N-doped graphene dot/SnO(2)quantum dot (N-GD-SnO2) heterostructures are preparedviaa simple wet-chemical method. In comparison with pristine-SnO2, our fabricated device exhibits an enhanced response (R-g/R-a= 292) with a short response (181 s) and recovery time (81 s) toward 100 ppb NO(2)gas at 150 degrees C; furthermore, the response increases to 4336 as the temperature decreases to 50 degrees C. The sensor also exhibits the distinct capability to detect NO(2)with an ultralow concentration of 20 ppb with high response. This dramatic enhancement is attributed to enhanced electron transfer from SnO(2)to N-GDs and stronger adsorption of NO(2)molecules onto the N-GDs' surface. Additionally, zero-dimensional morphology also helped to enhanced sensing performance due to large surface area, more active sites, and better nanoscale interface. Finally, the sensor exhibits the characteristics of excellent selectivity toward NO(2)over other gases (SO2, H2S, CO, and NH3). Thus, our research provides a new approach toward zero-dimensional heterostructures for gas-sensing applications. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.23, pp.11734 - 11742 -
dc.identifier.doi 10.1039/d0ta03037f -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-85086997627 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/36795 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2020/TA/D0TA03037F#!divAbstract -
dc.identifier.wosid 000542761900025 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Zero-dimensional heterostructures: N-doped graphene dots/SnO(2)for ultrasensitive and selective NO(2)gas sensing at low temperatures -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus GAS SENSORS -
dc.subject.keywordPlus QUANTUM DOTS -
dc.subject.keywordPlus NO2 -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus SNO2 -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus HUMIDITY -
dc.subject.keywordPlus ZNO -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.