BROWSE

Related Researcher

Author

Lee, Sukbin
Multidimensional Structural Materials Lab
Research Interests
  • Microstructural evolution, advanced characterization, computational materials science, 3D materials science, microstructure-property relation

ITEM VIEW & DOWNLOAD

Role of Grain Boundary Defects During Grain Coarsening of Lamellar Block Copolymers

Cited 8 times inthomson ciCited 6 times inthomson ci
Title
Role of Grain Boundary Defects During Grain Coarsening of Lamellar Block Copolymers
Author
Ryu, Hyung JuFortner, David B.Lee, SukbinFerebee, RachelDe Graef, MarcMisichronis, KonstantinosAvgeropoulos, ApostolosBockstaller, Michael R.
Keywords
Block copolymer films; Boundary energies; Coarsening kinetics; Coarsening process; Continuous relaxation; Copolymer microstructures; Degree of order; Evolution of grain; Governing parameters; Grain boundary structure; Grain coarsening; Grain-boundary defects; Grain-boundary energy; Initial transient stage; Inorganic materials; Inverse relations; Kinetic pathway; Lamellar diblock copolymers; Preparation process; Quasi-stationary; Rapid relaxation; Symmetric tilt boundaries; Thermal-annealing
Issue Date
201301
Publisher
AMER CHEMICAL SOC
Citation
MACROMOLECULES, v.46, no.1, pp.204 - 215
Abstract
The evolution of grain size and shape as well as type and frequency of grain boundary structures during thermal annealing of lamellar diblock copolymer microstructures is established using large area image reconstruction and analysis. Grain coarsening is found to proceed via an initial transient stage that is characterized by the rapid relaxation of unstable "frozen-in" defects such as kink boundaries and the subsequent quasi-stationary coarsening that is dominated by the continuous relaxation of low-angle symmetric tilt boundaries. The particular relevance of low-angle symmetric tilt boundaries to grain coarsening is interpreted as the consequence of both the associated decrease of boundary energy as well as the availability of favorable kinetic pathways-such as grain boundary splitting-to facilitate the coarsening process. The inverse relation between grain boundary energy and frequency suggests that the reduction of boundary energy is a relevant governing parameter for the evolution of grain boundary structures-as it is in inorganic materials. The existence of "inert" boundary types (such as asymmetric tilt and twist) that-within the experimental window-do not participate in the coarsening process is expected to have dominant influence on the final morphology that can be attained by thermal annealing of the microstructure. The reduction of the density of inert boundaries during the film preparation process should therefore provide a strategy for increasing the coarsening kinetics in block copolymer films during thermal annealing and thus a path toward a higher degree of order in block copolymer microstructures.
URI
Go to Link
DOI
http://dx.doi.org/10.1021/ma3015382
ISSN
0024-9297
Appears in Collections:
MSE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU