BROWSE

Related Researcher

Author

Cho, Jaephil
Nano Energy Storage Materials Lab (NESM)
Research Interests
  • Li-ion battery, metal-air battery, redox-flow battery, flexible battery .

ITEM VIEW & DOWNLOAD

Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes

Cited 0 times inthomson ciCited 31 times inthomson ci
Title
Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes
Author
Cho, Yong JaeKim, Han SungIm, HyungsoonMyung, YoonJung, Gyeong BokLee, Chi WooPark, JeungheePark, Mi-HeeCho, JaephilKang, Hong Seok
Keywords
Charge capacities; First-principles calculation; Graphene sheets; Graphite-like structures; Graphitic layers; Lithium Intercalation; Lithium-ion battery; N-Doping; Nitrogen-doped; Silicon Nanowires; Storage capacity
Issue Date
201105
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.115, no.19, pp.9451 - 9457
Abstract
Nitrogen (N)-doped graphitic layers were deposited as shells on pregrown silicon nanowires by chemical vapor deposition. Graphite-like and pyridine-like structures were selectively chosen for 3 and 10% N doping, respectively. Increasing the thickness of the undoped graphitic layers from 20 to 50 nm led to an increase in the charge capacity of the lithium ion battery from 800 to 1040 mA h/g after 45 cycles. Graphite-like 3% N-doping in the 50 nm-thick shell increases the charge capacity by 21% (i.e., to 1260 mA h/g), while pyridine-like 10% N-doping in the 20 nm-thick shell increases it by 36% (i.e., to 1090 mA h/g). This suggests that both pyridine- and graphite-like structures can be effective for lithium intercalation. First principles calculations of the graphene sheets show that the large storage capacity of both N-doping structures comes from the formation of dangling bonds around the pyridine-like local motives upon lithium intercalation.
URI
Go to Link
DOI
http://dx.doi.org/10.1021/jp201485j
ISSN
1932-7447
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU