BROWSE

Related Researcher

Author

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Research Interests
  • Molecular modeling and simulation, statistical thermodynamics, molecular physics

ITEM VIEW & DOWNLOAD

Biomolecular engineering of a human beta defensin model for increased salt resistance

Cited 0 times inthomson ciCited 3 times inthomson ci
Title
Biomolecular engineering of a human beta defensin model for increased salt resistance
Author
Li, XiangSaravanan, RathiKwak, Sang KyuLeong, Susanna Su Jan
Keywords
Biological and biomolecular engineering; Biomedical engineering; Bioprocessing; Human beta defensin; Product design; Salt resistance
Issue Date
201305
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CHEMICAL ENGINEERING SCIENCE, v.95, no., pp.128 - 137
Abstract
Human beta defensins (hBDs) are natural antimicrobial peptides (AMPs) with broad spectrum antimicrobial activity. However, hBDs, like many AMPs, are easily inactivated by salt, which limits their extracellular applications as antimicrobial coating agents. In this study, a salt-resistant hBD28 peptide was designed by increasing C-terminus cationicity of the wild type peptide via rational amino acid substitution. The mutant hBD28 exhibited salt-tolerance behaviour and improved antimicrobial potency compared to wild type hBD28. Zeta potential analysis confirmed that increased cationicity was crucial to overcome salt-induced charge-shielding effects, which enhanced peptide-membrane interaction compared to the wild type peptide. The mutant hBD28 did not exhibit obvious differences with respect to hydrophobicity, oligomerization ability, and secondary structure compared to the wild type peptide. A simple design strategy to overcome salt-inactivation in hBD28 is demonstrated through this study, which will guide the design of other salt-resistant AMPs to accelerate their development as anti-infective agents in ionic environments.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.ces.2013.02.063
ISSN
0009-2509
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU