BROWSE

Related Researcher

Author

Cho, Kyung Hwa
Environmental Monitoring and Modeling Lab (EM2)
Research Interests
  • Water Quality Monitoring and Modeling, Water Treatment Process Modeling

ITEM VIEW & DOWNLOAD

Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: Three-year study and analysis

Cited 5 times inthomson ciCited 4 times inthomson ci
Title
Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: Three-year study and analysis
Author
Yakirevich, APachepsky, Y.A.Guber, A.K.Gish, T.J.Shelton, D.R.Cho, Kyung Hwa
Keywords
Creek; Erosive boundary layers; High-flow; Microbial contamination; One-dimensional model; Re-suspension; Saint Venant equation; Solute transport model
Issue Date
201305
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
WATER RESEARCH, v.47, no.8, pp.2676 - 2688
Abstract
Escherichia coli is the leading indicator of microbial contamination of natural waters, and so its in-stream fate and transport needs to be understood to eventually minimize surface water contamination by microorganisms. To better understand mechanisms of E. coli release and transport from soil sediment in a creek the artificial high-water flow events were created by releasing 60-80 m(3) of city water on a tarp-covered stream bank in four equal allotments in July 2008, 2009 and 2010. A conservative tracer difluorobenzoic acid (DFBA) was added to the released water in 2009 and 2010. Water flow rate, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at three in-stream weirs. A one-dimensional model was applied to simulate water flow, and E. coli and DFBA transport during these experiments. The Saint Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for release of bacteria by shear stress from bottom sediments, advection-dispersion, and exchange with transient storage (TS). Reach-specific model parameters were estimated by evaluating observed time series of flow rates and concentrations of DFBA and E. coli at all three weir stations. Observed DFBA and E. coli breakthrough curves (BTC) exhibited long tails after the water pulse and tracer peaks had passed indicating that transient storage (TS) might be an important element of the in-stream transport process. Comparison of simulated and measured E. coli concentrations indicated that significant release of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The mechanism of bacteria continuing release from sediment could be the erosive boundary layer exchange enhanced by changes in biofilm properties by erosion and sloughing detachment.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.watres.2013.02.011
ISSN
0043-1354
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU