File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

고현협

Ko, Hyunhyub
Functional Nanomaterials & Devices Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces

Author(s)
Park, JonghwaLee, YoungsuLee, HochanKo, Hyunhyub
Issued Date
2020-01
DOI
10.1021/acsnano.9b09846
URI
https://scholarworks.unist.ac.kr/handle/201301/31517
Fulltext
https://pubs.acs.org/doi/10.1021/acsnano.9b09846
Citation
ACS NANO, v.14, no.1, pp.12 - 20
Abstract
Transfer printing of electronic functions on arbitrary surfaces is essential for next-generation applications of skin-attachable electronics, wearable sensors, and implantable/medical devices. For transfer printing of electronic functions on multidimensional surfaces, such as curved regions of the skin and different objects, various strategies have been devised based on the materials and structural design of electronic components and transfer stamps, such as ultrathin membranes or in-plane structures of electronic components, soft interfacial glues or adhesives between devices and surfaces, and smart transfer adhesives with bioinspired micro/nanostructures. These techniques enable high conformity of adhesion, mechanical robustness, and high compliance of electronic devices on arbitrary surfaces under mechanical deformation. In this Perspective, we provide an overview of recent transfer printing techniques and discuss their advantages and challenges. In addition, we report a recently developed transfer printing technique based on bioinspired smart adhesives with reversible adhesion, which enables compliant electronics on various arbitrary complex surfaces without performance degradation, providing solutions for various technical challenges remaining in transfer printing. Finally, we present potential applications of transfer printing and future perspectives for this emerging field.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851
Keyword
SOFTSEMICONDUCTORFABRICATIONMECHANICSADHESIVESDEVICESDESIGNLAYERS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.