BROWSE

Related Researcher

Author

Madou, Mark
BIO-MEMS Lab
Research Interests
  • Medical Diagnostics

ITEM VIEW & DOWNLOAD

Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications

Cited 17 times inthomson ciCited 17 times inthomson ci
Title
Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications
Author
Siegrist, JonathanKazarian, TroyEnsor, CharlesJoel, SmitaMadou, MarcWang, PingDaunert, Sylvia
Keywords
Binding protein; Binding proteins; Buffered solutions; Continuous glucose monitoring; Diabetic patient; Electrochemical glucose sensors; Glucose control; Glucose sensing; High precision; High selectivity; In-vitro; In-vivo; Physiologic temperature; Polyacrylamide hydrogels; Proof of concept; Reagent-less; Response time; Sensing devices; Sensing systems; Sensing technology; Sensor drift; Sensor parameter; Whole blood
Issue Date
201008
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.149, no.1, pp.51 - 58
Abstract
As the importance of blood-glucose control for both diabetic and non-diabetic patients continues to increase, there is a need for more advanced glucose-sensing technologies. In particular, an in vivo glucose sensor is needed that exhibits high accuracy when operating in a continuous manner for a relatively long period of time (3-5 days). Development of such sensors has been hampered, as low accuracy and sensor drift become major problems with in vivo environments, especially for enzyme-based electrochemical glucose sensors. This paper reports on the use of a novel, binding polypeptide-based, fluorescent, glucose-sensing system that promises to overcome many drawbacks of an enzyme-based system while showing the potential for high accuracy, especially at hypoglycemic levels. Fluorescently labeled glucose recognition polypeptide elements were immobilized in a polyacrylamide hydrogel matrix placed on the tip of an optical fiber to realize a continuous glucose-sensing device towards in vivo applications. In vitro validation was performed in both buffered solutions and whole blood to characterize sensor parameters such as sensitivity and response time. Testing demonstrated that the reagentless polypeptide-based glucose-sensing system has extreme sensitivity in the hypoglycemic levels while providing high precision across the entire human physiologic glucose range. Additionally, the sensor was shown to function at physiologic temperature (viz., 37 degrees C) and displayed high selectivity for glucose without interference from other sugars (viz., fructose). This represents the first report of implementing immobilized glucose binding protein-like elements in a sensing device for continuous glucose monitoring, and establishes proof-of-concept as an excellent alternative to overcoming problems of current long-term, continuous glucose-sensing technologies.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.snb.2010.06.031
ISSN
0925-4005
Appears in Collections:
SLS_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU