File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Easily Attainable Phenothiazine-Based Polymers for Polymer Solar Cells: Advantage of Insertion of S,S-dioxides into its Polymer for Inverted Structure Solar Cells

Author(s)
Kim, GyoungsikYeom, Hye RimCho, ShinukSeo, Jung HwaKim, Jin YoungYang, Changduk
Issued Date
2012-02
DOI
10.1021/ma202661b
URI
https://scholarworks.unist.ac.kr/handle/201301/3106
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84863275182
Citation
MACROMOLECULES, v.45, no.4, pp.1847 - 1857
Abstract
Two donor- (D-) acceptor (A) type polymers based on a soluble chromophore of phenothiazine (PT) unit that is a tricyclic nitrogen-sulfur heterocycle, have been synthesized by introducing an electron-deficient benzothiadiazole (BT) building block copolymerized with either PT or phenothiazine-S,S-dioxide (PT-SS) unit as an oxidized form of PT. The resulting polymers, PPTDTBT and PPTDTBT-SS are fully characterized by UV-vis absorption, electrochemical cyclic voltammetry, Xray diffraction (XRD), and DFT theoretical calculations. We find that the maximum absorption of PPTDTBT is not only markedly red-shifted with respect to that of PPTDTBT-SS but also its band gap as well as molecular energy levels are readily tuned by the insertion of S,S-dioxides into the polymer. The main interest is focused on the electronic applications of the two polymers in organic field-effect transistors (OFETs) as well as conventional and inverted polymeric solar cells (PSCs). PPTDTBT is a typical p-type polymer semiconductor for OFETs and conventional PSCs based on this polymer and PC71BM show a power conversion efficiency (PCE) of 1.69%. In case of PPTDTBT-SS, the devices characteristics result in: (i) 1 order of magnitude higher hole mobility (mu = 6.9 x 10(-4) cm(2) V-1 s(-1)) than that obtained with PPTDTBT and (ii) improved performance of the inverted PSCs (1.22%), compared to its conventional devices. Such positive features can be accounted for in terms of closer packing molecular characteristics owing either to the effects of dipolar intermolecular interactions orientated from the sulfonyl groups or the relatively high coplanarity of PPTDTBT-SS backbone.
Publisher
AMER CHEMICAL SOC
ISSN
0024-9297

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.