File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Bipolymer-Cross-Linked Binder to Improve the Reversibility and Kinetics of Sodiation and Desodiation of Antimony for Sodium-Ion Batteries

Author(s)
Kim, DohyoungHwang, ChihyunJeong, JihongSong, Woo-JinPark, SoojinSong, Hyun-Kon
Issued Date
2019-11
DOI
10.1021/acsami.9b11003
URI
https://scholarworks.unist.ac.kr/handle/201301/30709
Fulltext
https://pubs.acs.org/doi/10.1021/acsami.9b11003
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.46, pp.43039 - 43045
Abstract
Although the volume of antimony tremendously expands during the alloying reaction with sodium, it is considered a promising anode material for sodium-ion batteries (SIBs). Repeated volume changes along the sodiation/desodiation cycles encourage capacity fading by triggering pulverization accompanying electrolyte decomposition. Additionally, the low cation transference number of sodium ions is another hindrance for application in SIBs. In this work, a binder was designed for the antimony in SIB cells to ensure bifunctionality and improve (1) the mechanical toughness to suppress the serious volume change and (2) the transference number of sodium ions. A cross-linked composite of poly(acrylic acid) and cyanoethyl pullulan (pullulan-CN) was presented as the binder. The polysaccharide backbone of pullulan-CN was responsible for the mechanical toughness, while the cyanoethyl groups of pullulan-CN improved the lithium-cation transfer. The antimony-based SIB cells using the composite binder showed improved cycle life with enhanced kinetics. The capacity was maintained at 76% of the initial value at the 200th cycle of 1C discharge following 1C charge, while the capacity at 20C was 61% of the capacity at 0.2C, implying that the composite binder significantly improved the sodiation/desodiation reversibility of antimony.
Publisher
AMER CHEMICAL SOC
ISSN
1944-8244
Keyword (Author)
Na-ion batteryantimonypolysaccharide bindercross-linked bindercation migration
Keyword
HIGH-PERFORMANCE ANODENA-IONLI-IONHOLLOW NANOSPHERESSILICON ANODESHIGH-CAPACITYSBELECTRODESNANOTUBESNANOCRYSTALS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.