File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 8800 -
dc.citation.number 12 -
dc.citation.startPage 8793 -
dc.citation.title NANO LETTERS -
dc.citation.volume 19 -
dc.contributor.author Yeom, Su Jeong -
dc.contributor.author Lee, Cheolmin -
dc.contributor.author Kang, Sujin -
dc.contributor.author Wi, Tae-Ung -
dc.contributor.author Lee, Chanhee -
dc.contributor.author Chae, Sujong -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Shin, Dong Ok -
dc.contributor.author Ryu, Jungki -
dc.contributor.author Lee, Hyun-Wook -
dc.date.accessioned 2023-12-21T18:14:50Z -
dc.date.available 2023-12-21T18:14:50Z -
dc.date.created 2019-12-20 -
dc.date.issued 2019-12 -
dc.description.abstract Volumetric energy density is considered a primary factor in developing high-energy batteries. Despite its significance, less efforts have been devoted to its improvement. Silicon-based materials have emerged as next-generation anodes for lithium-ion batteries due to their high specific capacity. However, their volumetric capacities are limited by the volume expansion rate of silicon, which restricts mass loading in the electrodes. To address this challenge, we introduce porous silicon templated from earth-abundant minerals with native internal voids, capable of alleviating volumetric expansion during repeated cycles. In situ transmission electron microscopy analysis allows the precise determination of the expansion rate of silicon, thus presenting an analytical model for finding the optimal content in silicon/graphite composites. The inner pores in silicon reduce problems associated with its expansion and allow higher silicon loading of 42% beyond the conventional limitations of 13–14%. Consequently, the anode designed in this work can deliver a volumetric capacity of 978 mAh cc–1. Thus, suppressing volume expansion with natural abundant template-assisted materials opens new avenues for cost-effective fabrication of high volumetric capacity batteries. -
dc.identifier.bibliographicCitation NANO LETTERS, v.19, no.12, pp.8793 - 8800 -
dc.identifier.doi 10.1021/acs.nanolett.9b03583 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85074921604 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30651 -
dc.identifier.url https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b03583 -
dc.identifier.wosid 000502687500056 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor High-volumetric batteries -
dc.subject.keywordAuthor volumetric capacity -
dc.subject.keywordAuthor Si/graphite composites -
dc.subject.keywordAuthor native void space -
dc.subject.keywordAuthor in situ TEM -
dc.subject.keywordPlus SOLID-ELECTROLYTE INTERPHASE -
dc.subject.keywordPlus LITHIUM METAL ANODES -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus SHELL -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.