BROWSE

Related Researcher

Author

Kwon, Young-Nam
Superior Membrane-based Advanced Research & Technology (SMART) Lab
Research Interests
  • Membrane, Reverse(Forward) osmosis, Membrane distillation, Hydrate-induced ice desalination

ITEM VIEW & DOWNLOAD

The role of foulant-foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling-Theoretical basis, experimental evidence, and AFM interaction force measurement

Cited 36 times inthomson ciCited 35 times inthomson ci
Title
The role of foulant-foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling-Theoretical basis, experimental evidence, and AFM interaction force measurement
Author
Tang, Chuyang Y.Kwon, Young-NamLeckie, James O.
Keywords
Afm interactions; Applied pressures; Atomic forces; Constant pressures; Critical flux; Divalent ions; Dlvo interactions; Electrostatic interactions; Electrostatic repulsive forces; Experimental evidences; Flux models; Fouled membranes; Fouling behaviors; Humic Acids; Intermolecular interactions; Limiting flux; Membrane fouling; Membrane samples; Natural organic matter; NF membranes; Organic macromolecules; Theoretical models
Issue Date
200901
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MEMBRANE SCIENCE, v.326, no.2, pp.526 - 532
Abstract
A limiting flux model has been recently developed for predicting the fouling behavior of reverse osmosis and nanofiltration membranes by organic macromolecules [C.Y. Tang, J.O. Leckie, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environmental Science and Technology 41 (2007) 4767-4773]. Several interesting results have been observed: (a) there was a maximum pseudostable flux (the limiting flux) beyond which further increase in applied pressure did not translate to a greater stable flux; (b) all membrane samples attained the limiting flux under constant pressure conditions as long as their initial flux was greater than the limiting flux; (c) the limiting flux did not depend on the properties of membranes; (d) the limiting flux had strong dependence on the feedwater composition, such as pH, ionic strength, and divalent ion concentration. The current study investigates the dependence of limiting flux on intermolecular interaction between foulant molecules. It was observed that the limiting flux was directly proportional to the intermolecular electrostatic repulsive force and that conditions enhancing foulant-deposited-foulant repulsion resulted in greater limiting flux values. Such observations agree well with a theoretical model capturing both hydrodynamic and DLVO interactions. Interaction force measurements by atomic force microscopy (AFM) were also performed. The limiting flux correlated reasonably well with AFM interaction force between the model foulant and the fouled membrane surface.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.memsci.2008.10.043
ISSN
0376-7388
Appears in Collections:
UEE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU