File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage e26062 -
dc.citation.title INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY -
dc.citation.volume 120 -
dc.contributor.author Wang, LiLing -
dc.contributor.author Azizi, Alireza -
dc.contributor.author Momen, Roya -
dc.contributor.author Xu, Tianlv -
dc.contributor.author Kirk, Steven R. -
dc.contributor.author Filatov, Michael -
dc.contributor.author Jenkins, Samantha -
dc.date.accessioned 2023-12-21T18:11:01Z -
dc.date.available 2023-12-21T18:11:01Z -
dc.date.created 2019-11-22 -
dc.date.issued 2020-01 -
dc.description.abstract Next-generation quantum theory of atoms in molecules was applied to analyze, along an entire bond path, intramolecular interactions known to influence the photoisomerization dynamics of a light-driven rotary molecular motor. The 3D bond-path framework set B-0,B-1 constructed from the least and most preferred directions of electronic motion, provided new insights into the bonding leading to different S-1 state lifetimes including the first quantification of covalent character of a closed-shell intramolecular bond path. We undertook the first use of the stress tensor trajectory T-sigma(s) analysis on selected nonadiabatic molecular dynamics trajectories with the electron densities obtained using the ensemble density functional theory method. The stress tensor T-sigma(s) analysis was found to be well suited to follow the dynamics trajectories that included the S-0 and S-1 electronic states through the conical intersection and also provided to a new measure to assess the degree of purity of the axial bond rotation for the design of rotary molecular motors. -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, v.120, no.1, pp.e26062 -
dc.identifier.doi 10.1002/qua.26062 -
dc.identifier.issn 0020-7608 -
dc.identifier.scopusid 2-s2.0-85074837634 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30448 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/qua.26062 -
dc.identifier.wosid 000494502700001 -
dc.language 영어 -
dc.publisher WILEY -
dc.title Next-generation quantum theory of atoms in molecules for the S-1/S-0 conical intersections in dynamics trajectories of a light-driven rotary molecular motor -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Mathematics, Interdisciplinary Applications; Quantum Science & Technology; Physics, Atomic, Molecular & Chemical -
dc.relation.journalResearchArea Chemistry; Mathematics; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor light-driven molecular rotary motor -
dc.subject.keywordAuthor next-generation QTAIM -
dc.subject.keywordAuthor dynamics trajectories -
dc.subject.keywordAuthor conical intersection -
dc.subject.keywordAuthor stress tensor -
dc.subject.keywordPlus GRAPHICAL PROCESSING UNITS -
dc.subject.keywordPlus STRESS TENSOR -
dc.subject.keywordPlus EXCITED-STATES -
dc.subject.keywordPlus ELECTRONIC-STRUCTURE -
dc.subject.keywordPlus QTAIM -
dc.subject.keywordPlus CHEMISTRY -
dc.subject.keywordPlus TORSION -
dc.subject.keywordPlus PHASES -
dc.subject.keywordPlus FIELD -
dc.subject.keywordPlus ICE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.