File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3490 -
dc.citation.number 7 -
dc.citation.startPage 3483 -
dc.citation.title NANO LETTERS -
dc.citation.volume 12 -
dc.contributor.author Song, Min-Kyu -
dc.contributor.author Cheng, Shuang -
dc.contributor.author Chen, Haiyan -
dc.contributor.author Qin, Wentao -
dc.contributor.author Nam, Kyung-Wan -
dc.contributor.author Xu, Shucheng -
dc.contributor.author Yang, Xiao-Qing -
dc.contributor.author Bongiorno, Angelo -
dc.contributor.author Lee, Jangsoo -
dc.contributor.author Bai, Jianming -
dc.contributor.author Tyson, Trevor A. -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Liu, Meilin -
dc.date.accessioned 2023-12-22T05:06:59Z -
dc.date.available 2023-12-22T05:06:59Z -
dc.date.created 2013-06-10 -
dc.date.issued 2012-07 -
dc.description.abstract While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, rnixed-valent manganese oxide film that exhibits anomalously high specific capacitance (similar to 2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials similar to 0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices. -
dc.identifier.bibliographicCitation NANO LETTERS, v.12, no.7, pp.3483 - 3490 -
dc.identifier.doi 10.1021/nl300984y -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-84863848926 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/2986 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84863848926 -
dc.identifier.wosid 000306296200022 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage -
dc.type Article -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Energy storage -
dc.subject.keywordAuthor electrochemical capacitors -
dc.subject.keywordAuthor mixed-valent compounds -
dc.subject.keywordAuthor enhanced pseudocapacitance -
dc.subject.keywordAuthor in situ X-ray absorption spectroscopy -
dc.subject.keywordPlus ELECTROCHEMICAL CAPACITORS -
dc.subject.keywordPlus CHARGE COMPENSATION -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus HIGH-POWER -
dc.subject.keywordPlus SUPERCAPACITOR -
dc.subject.keywordPlus MNO2 -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus COMPOSITES -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus BATTERIES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.