File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박상서

Park, Sang Seo
Environmental Radiation Monitoring Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Simulation of Threshold UV Exposure Time for Vitamin D Synthesis in South Korea

Author(s)
Park, Sang SeoLee, Yun GonKim, MigyoungKim, JaeminKoo, Ja-HoKim, Chang KiUm, JunshikYoon, Jongmin
Issued Date
2019-01
DOI
10.1155/2019/4328151
URI
https://scholarworks.unist.ac.kr/handle/201301/27347
Fulltext
https://www.hindawi.com/journals/amete/2019/4328151/
Citation
ADVANCES IN METEOROLOGY, v.2019, pp.1 - 15
Abstract
The threshold exposure time for synthesis of vitamin D was simulated by using a radiative transfer model considering variations in total ozone, cloud, and surface conditions. The prediction of total ozone took the form of an empirical linear regression with the variables of meteorological parameters in the upper troposphere and lower stratosphere and the climatology value of total ozone. Additionally, to consider cloud extinction after the estimation of clear-sky UV radiation using a radiative transfer model simulation, a cloud modification factor was applied. The UV irradiance was estimated at one-hour intervals, and then, to improve the temporal resolution of the exposure time simulation, it was interpolated to a one-minute resolution. Exposure times from the simulation clearly followed seasonal and diurnal cycles. However, upon comparison with observations, biases with large variations were found, and the discrepancy in the exposure time between the observations and simulations was higher in low UV irradiance conditions. The large deviations in the prediction errors for total ozone and the simplified assumption for the cloud modification factor contributed to the large deviations in exposure time differences between the model estimation and observations. To improve the accuracy of the simulated exposure time, improved predictions of total ozone with a more detailed cloud treatment will be essential.
Publisher
HINDAWI LTD
ISSN
1687-9309
Keyword
SOLAR ULTRAVIOLET-RADIATIONTOTAL OZONEERYTHEMAL UVPOPULAR ATTITUDESINDEX FORECASTSLIGHT EXPOSUREB IRRADIANCECLOUDSURFACEMODEL

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.