File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이창영

Lee, Chang Young
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 27 -
dc.citation.startPage 1900421 -
dc.citation.title ADVANCED FUNCTIONAL MATERIALS -
dc.citation.volume 29 -
dc.contributor.author Min, Hyegi -
dc.contributor.author Kim, Yun-Tae -
dc.contributor.author Moon, Seung Min -
dc.contributor.author Han, Jae-Hee -
dc.contributor.author Yum, Kyungsuk -
dc.contributor.author Lee, Chang Young -
dc.date.accessioned 2023-12-21T19:06:28Z -
dc.date.available 2023-12-21T19:06:28Z -
dc.date.created 2019-05-23 -
dc.date.issued 2019-07 -
dc.description.abstract The interior channels of carbon nanotubes are promising for studying transport of individual molecules in a 1D confined space. However, experimental investigations of the interior transport have been limited by the extremely low yields of fabricated nanochannels and their characterization. Here, this challenge is addressed by assembling nanotube membranes on glass capillaries and employing a voltage-ramping protocol. Centimeter-long carbon nanotubes embedded in an epoxy matrix are sliced to hundreds of 10 µm-thick membranes containing essentially identical nanotubes. The membrane is attached to glass capillaries and dipped into analyte solution. Repeated ramping of the transmembrane voltage gradually increases ion conductance and activates the nanotube ion channels in 90% of the membranes; 33% of the activated membranes exhibit stochastic pore-blocking events caused by cation translocation through the interiors of the nanotubes. Since the membrane-capillary assembly can be handled independently of the analyte solution, fluidic exchange can be carried out simply by dipping the capillary into a solution of another analyte. This capability is demonstrated by sequentially measuring the threshold transmembrane voltages and ion mobilities for K + , Na + , and Li + . This approach, validated with carbon nanotubes, will save significant time and effort when preparing and testing a broad range of solid-state nanopores. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.identifier.bibliographicCitation ADVANCED FUNCTIONAL MATERIALS, v.29, no.27, pp.1900421 -
dc.identifier.doi 10.1002/adfm.201900421 -
dc.identifier.issn 1616-301X -
dc.identifier.scopusid 2-s2.0-85065035029 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26737 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201900421 -
dc.identifier.wosid 000478619900020 -
dc.language 영어 -
dc.publisher Wiley-VCH Verlag -
dc.title High-Yield Fabrication, Activation, and Characterization of Carbon Nanotube Ion Channels by Repeated Voltage-Ramping of Membrane-Capillary Assembly -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor capillary -
dc.subject.keywordAuthor microtomy -
dc.subject.keywordAuthor nanochannels -
dc.subject.keywordAuthor stochastic pore-blocking -
dc.subject.keywordAuthor voltage-ramping -
dc.subject.keywordPlus Capillary assembly -
dc.subject.keywordPlus Experimental investigations -
dc.subject.keywordPlus microtomy -
dc.subject.keywordPlus Nano channels -
dc.subject.keywordPlus Pore blocking -
dc.subject.keywordPlus Solid-state nanopore -
dc.subject.keywordPlus Capillarity -
dc.subject.keywordPlus Carbon nanotubes -
dc.subject.keywordPlus Fabrication -
dc.subject.keywordPlus Glass -
dc.subject.keywordPlus Ions -
dc.subject.keywordPlus Membranes -
dc.subject.keywordPlus Stochastic systems -
dc.subject.keywordPlus Yarn -
dc.subject.keywordPlus capillary -
dc.subject.keywordPlus Transmembrane voltage -
dc.subject.keywordPlus Nanopores -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.