File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권영국

Kwon, Youngkook
Electrochemistry Lab for Energy and Environment
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Highly effective anode structure in a direct formic acid fuel cell

Author(s)
Uhm, SunghyunKwon, YoungkookChung, Sung TaikLee, Jaeyoung
Issued Date
2008-06
DOI
10.1016/j.electacta.2008.02.052
URI
https://scholarworks.unist.ac.kr/handle/201301/26520
Fulltext
https://www.sciencedirect.com/science/article/pii/S0013468608002272?via%3Dihub
Citation
ELECTROCHIMICA ACTA, v.53, no.16, pp.5162 - 5168
Abstract
We report the mass transport characteristics of formic acid and performance enhancement in a direct formic acid fuel cell in terms of the property of anode components. The effect of hydrophobicity of anode diffusion media as well as catalyst layer was investigated applying different cell temperature and fuel concentration. The operation over 80 degrees C and concentrated formic acid is of great advantage to the enhancement of catalytic activity and better water management. On the other hand, the conductivity of formic acid decreases by means of the formation of more complex chains of formic acid and the fuel cell resistance increases by membrane dehydration effect due to the hygroscopic property of formic acid, resulting in overall decrease of cell performance and long-term stability. Optimizing operating conditions, the use of 60% PtRu/C with only I mg/cm(2) on plain carbon paper can be one of the good choice to achieve both sustainable power performance and higher utilization of anode catalysts keeping cell resistance. (C) 2008 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0013-4686
Keyword (Author)
formic acidfuel conductivitycell resistancelong-term stabilityanode structure
Keyword
FLOW-FIELDMETHANOLPERFORMANCELAYERSPECTROSCOPYCATALYSTSELECTROOXIDATIONIMPEDANCETRANSPORTDMFC

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.