File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박종남

Park, Jongnam
Materials and Chemistry Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes

Author(s)
Park, Jong HyunLee, Ah-youngYu, Jae ChoulNam, Yun SeokChoi, YonghoonPark, JongnamSong, Myoung Hoon
Issued Date
2019-02
DOI
10.1021/acsami.8b20808
URI
https://scholarworks.unist.ac.kr/handle/201301/26395
Fulltext
https://pubs.acs.org/doi/10.1021/acsami.8b20808
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.8, pp.8428 - 8435
Abstract
Lead halide perovskites (LHPs) are emerging as promising materials for light-emitting device applications because of the tunability of the band gap, narrow emission, solution processability, and flexibility. Typically, LHP nanocrystals (NCs) with surface ligands show high photoluminescence quantum yields because of charge-carrier confinement with higher exciton binding energy (Eb). However, the conventionally used oleylamine (OAm) ligands result in the low electrical conductivity and stability of perovskite NCs (PNCs) because of a long carbon chain without conjugation bonds and weak interaction with the surface of NCs. Here, we report the effect of bulkiness and chain length of ligand materials on the properties and stability of CsPbBr3 PNCs by replacing OAm with other suitable ligands. The effect of the bulkiness of quaternary ammonium bromide (QAB) ligands was systemically studied. The less bulky QAB ligands surrounded the surface of NCs effectively, and brought better surface passivation and less aggregation compared to bulky QAB ligands, and finally the optical property and stability of CsPbBr3 PNCs were enhanced. Furthermore, the electrical property of CsPbBr3 PNCs was optimized by tuning the long-chain length of QAB ligands for balanced charge-carrier transport. Finally, we achieved highly efficient green emissive CsPbBr3 PNC light-emitting diodes (LEDs) by using PNCs with optimized didecyldimethyl ammonium bromide ligands with a current efficiency of 31.7 cd A–1 and external quantum efficiency of 9.7%, which were enhanced 16-fold compared to those of CsPbBr3 LEDs using PNCs with conventional OAm ligands.
Publisher
American Chemical Society (ACS)
ISSN
1944-8244
Keyword (Author)
high efficiencyligand engineeringnanocrystalnanocrystal stabilityperovskite light-emitting diodes

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.