File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 565 -
dc.citation.number 2 -
dc.citation.startPage 559 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 12 -
dc.contributor.author Cho, Sung-Ju -
dc.contributor.author Jung, Gwan Yeong -
dc.contributor.author Kim, Su Hwan -
dc.contributor.author Jang, Minchul -
dc.contributor.author Yang, Doo-Kyung -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T19:37:32Z -
dc.date.available 2023-12-21T19:37:32Z -
dc.date.created 2019-03-12 -
dc.date.issued 2019-02 -
dc.description.abstract Traditional single-phase electrolytes, which are widely used in current state-of-the-art rechargeable batteries, have difficulties simultaneously fulfilling different chemical/electrochemical requirements of anodes and cathodes. Here, we demonstrate a new class of monolithic heterojunction quasi-solid-state electrolytes (MH-QEs) based on thermodynamically immiscible dual phases. As a proof-of-concept of the MH-QEs, their application to lithium–sulfur batteries is explored. Driven by combined effects of structural uniqueness and thermodynamic immiscibility, the electrode-customized MH-QEs provide exceptional electrochemical performance that lies far beyond those accessible with conventional battery electrolytes. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.12, no.2, pp.559 - 565 -
dc.identifier.doi 10.1039/c8ee01503a -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-85061926724 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26167 -
dc.identifier.url https://pubs.rsc.org/en/Content/ArticleLanding/2019/EE/C8EE01503A#!divAbstract -
dc.identifier.wosid 000459741700028 -
dc.language 영어 -
dc.publisher Royal Society of Chemistry -
dc.title.alternative Energy & Environmental Science -
dc.title Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LITHIUM-SULFUR BATTERIES -
dc.subject.keywordPlus POLYSULFIDE SHUTTLE -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus SOLVATION -
dc.subject.keywordPlus DISCHARGE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.