BROWSE

Related Researcher

Author

Bang, In Cheol
Nuclear Thermal-Hydraulics & Reactor Safety Lab
Research Interests
  • Nuclear Thermal-Hydraulics

ITEM VIEW & DOWNLOAD

A benchmark study on the thermal conductivity of nanofluids

Cited 241 times inthomson ciCited 269 times inthomson ci
Title
A benchmark study on the thermal conductivity of nanofluids
Author
Kim, Ji HyunBang, In CheolBuongiorno, JacopoVenerus, David C.Prabhat, NaveenMcKrell, ThomasTownsend, JessicaChristianson, RebeccaTolmachev, Yuriy V.Keblinski, PawelHu, Lin-wenAlvarado, Jorge L.Bishnoi, Sandra W.Bonetti, MarcoBotz, FrankCecere, AnselmoChang, YunChen, GanyChen, HaishengChung, Sung JaeChyu, Minking K.Das, Sarit K.Di Paola, RobertoDing, YulongDubois, FrankDzido, GrzegorzEapen, JacobEscher, WernerFunfschilling, DenisGaland, QuentinGao, JinweiGharagozloo, Patricia E.Goodson, Kenneth E.Gutierrez, Jorge GustavoHong, HaipingHorton, MarkHwang, Kyo SikIorio, Carlo S.Jang, Seok PilJarzebski, Andrzej B.Jiang, YiranJin, LiwenKabelac, StephanKamath, AravindKedzierski, Mark A.Kieng, Lim GeokKim, ChongyoupKim, SeokwonLee, Seung HyunLeong, Kai ChoongManna, IndranilMichel, BrunoNi, RuiPatel, Hrishikesh E.Philip, JohnPoulikakos, DimosReynaud, CecileSavino, RaffaeleSingh, Pawan K.Song, PengxiangSundararajan, ThirumalachariTimofeeva, ElenaTritcak, ToddTuranov, Aleksandr N.Van Vaerenbergh, StefanWen, DongshengWitharana, SanjeevaYang, ChunYeh, Wei-HsunZhao, Xiao-ZhengZhou, Sheng-Qi
Keywords
Absolute values; Benchmark study; Classical theory; Data analysis; Dispersed particle; Effective medium theories; Elongated particles; Experimental approaches; Experimental data; Metal oxide particles; Nano-fluid; Nanofluids; Narrow bands; Non-aqueous; Optical methods; Particle concentrations; Sample average; Stable dispersions; Steady-state method; Transient hot wire method
Issue Date
200911
Publisher
AMER INST PHYSICS
Citation
JOURNAL OF APPLIED PHYSICS, v.106, no.9, pp.1 - 14
Abstract
This article reports or, the international Nanofluid Property Benchmark Exercise, or INPBE. in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids", was measured by over 30 organizations worldwide, using, a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (+/- 10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio. as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however. such differences tend to disappear when the data are normalized to the Measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.
URI
Go to Link
DOI
http://dx.doi.org/10.1063/1.3245330
ISSN
0021-8979
Appears in Collections:
MNE_Journal Papers
Files in This Item:
000272555700090.pdfDownload

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU