File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 5871 -
dc.citation.number 11 -
dc.citation.startPage 5865 -
dc.citation.title ACS APPLIED ENERGY MATERIALS -
dc.citation.volume 1 -
dc.contributor.author Yoon, Taeseung -
dc.contributor.author Kim, Gi-Hwan -
dc.contributor.author Myung, Chang Woo -
dc.contributor.author Kajal, Sandeep -
dc.contributor.author Jeong, Jaeki -
dc.contributor.author Kim, Jae Won -
dc.contributor.author Kim, Jin Young -
dc.contributor.author Kim, Kwang S. -
dc.date.accessioned 2023-12-21T20:06:25Z -
dc.date.available 2023-12-21T20:06:25Z -
dc.date.created 2019-01-02 -
dc.date.issued 2018-11 -
dc.description.abstract Additive-assisted organic-inorganic perovskite materials have attracted substantial attention as photovoltaic light absorbers which lead to outstanding power conversion efficiency. Here we report an easy and effective fabrication of cubic-phase perovskite with an inorganic molecule additive like hydrazinium chloride (N2H5Cl, to be denoted as HZCl). We predict that this inorganic cation of N2H5+, which can substitute for the organic A-site in the perovskite structure, can tune Fröhlich polaron properties by controlling the interaction strength and the number of proton coordinations to halide. This prediction is experimentally demonstrated with an optimized perovskite device with 2% N2H5Cl additive, which exhibits an unprecedented 85% fill factor (FF) with the highest value close to the Shockley-Queisser limit. An extra power conversion efficiency (PCE) of 2.3% and a fill factor (FF) efficiency of 14% are boosted. These optimized performances by additive effects lead to a new approach based on the theoretical calculation toward an improved performance of the perovskite solar cell. -
dc.identifier.bibliographicCitation ACS APPLIED ENERGY MATERIALS, v.1, no.11, pp.5865 - 5871 -
dc.identifier.doi 10.1021/acsaem.8b01364 -
dc.identifier.issn 2574-0962 -
dc.identifier.scopusid 2-s2.0-85064204849 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25565 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsaem.8b01364 -
dc.identifier.wosid 000458706700012 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Ambient-Stable Cubic-Phase Hybrid Perovskite Reaching the Shockley-Queisser Fill Factor Limit via Inorganic Additive-Assisted Process -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor perovskite solar cells -
dc.subject.keywordAuthor additive-assisted fabrication -
dc.subject.keywordAuthor Shockley-Queisser limit -
dc.subject.keywordAuthor hydrazinum chloride -
dc.subject.keywordAuthor DFT calculation -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus CHLORIDE -
dc.subject.keywordPlus CRYSTAL -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.