File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 8200 -
dc.citation.number 22 -
dc.citation.startPage 8190 -
dc.citation.title CHEMISTRY OF MATERIALS -
dc.citation.volume 30 -
dc.contributor.author Jung, Sung Hoo -
dc.contributor.author Oh, Kyungbae -
dc.contributor.author Nam, Young Jin -
dc.contributor.author Oh, Dae Yang -
dc.contributor.author Bruener, Philipp -
dc.contributor.author Kang, Kisuk -
dc.contributor.author Jung, Yoon Seok -
dc.date.accessioned 2023-12-21T20:06:39Z -
dc.date.available 2023-12-21T20:06:39Z -
dc.date.created 2018-12-13 -
dc.date.issued 2018-11 -
dc.description.abstract Most inorganic solid electrolytes (SEs) suffer from narrow intrinsic electrochemical windows and incompatibility with electrode materials, which results in the below par electrochemical performances of all-solid-state Li-ion or Li batteries (ASLBs). Unfortunately, in-depth understanding on the interfacial evolution and interfacial engineering via scalable protocols for ASLBs to mitigate these issues are at an infancy stage. Herein, we report on rationally designed Li3BO3-Li2CO3 (LBO-LCO or Li3-xB1-xCxO3 (LBCO)) coatings for LiCoO2 in ASLBs employing sulfide SE of Li6PS5Cl. The new aqueous-solution-based LBO-coating protocol allows us to convert the surface impurity on LiCoO2 and Li2CO3, into highly Li+-conductive LBCO layers (6.0 x 10(-7) S cm(-1) at 30 degrees C for LBCO vs 1.4 x 10(-9) S cm(-1) at 100 degrees C for Li2CO3 or 1.4 x 10(-9) S cm(-1) at 30 degrees C for LBO), which also offer interfacial stability with sulfide SE. By applying these high-surface-coverage LBCO coatings, significantly enhanced electrochemical performances are obtained in terms of capacity, rate capability, and durability. It is elucidated that the LBCO coatings suppress the evolution of detrimental mixed conducting interphases containing Co3S4 and effectively passivate the interfaces by the formation of alternative interface phases. -
dc.identifier.bibliographicCitation CHEMISTRY OF MATERIALS, v.30, no.22, pp.8190 - 8200 -
dc.identifier.doi 10.1021/acs.chemmater.8b03321 -
dc.identifier.issn 0897-4756 -
dc.identifier.scopusid 2-s2.0-85056596398 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25454 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03321 -
dc.identifier.wosid 000451789500011 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Li3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ATOMIC LAYER DEPOSITION -
dc.subject.keywordPlus HIGH-ENERGY-DENSITY -
dc.subject.keywordPlus GARNET-TYPE OXIDE -
dc.subject.keywordPlus CATHODE MATERIAL -
dc.subject.keywordPlus EFFICIENT ELECTROCATALYST -
dc.subject.keywordPlus ARGYRODITE LI6PS5CL -
dc.subject.keywordPlus INTERFACE STABILITY -
dc.subject.keywordPlus HIGH-POWER -
dc.subject.keywordPlus ELECTROLYTES -
dc.subject.keywordPlus LICOO2 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.