File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박성훈

Park, Sunghoon
Biochemical Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 19330 -
dc.citation.number 33 -
dc.citation.startPage 19323 -
dc.citation.title INTERNATIONAL JOURNAL OF HYDROGEN ENERGY -
dc.citation.volume 39 -
dc.contributor.author Seol, Eunhee -
dc.contributor.author Ainala, Satish Kumar -
dc.contributor.author Sekar, Balaji Sundara -
dc.contributor.author Park, Sunghoon -
dc.date.accessioned 2023-12-22T02:06:38Z -
dc.date.available 2023-12-22T02:06:38Z -
dc.date.created 2017-02-19 -
dc.date.issued 2014-11 -
dc.description.abstract The co-production of H-2 and ethanol from glucose was studied to address the low H-2 production yield in dark fermentation. Several mutant strains devoid of ackA-pta, pfkA or pgi were developed using Escherichia coli BW25113 Delta hycA Delta hyaAB Delta hybBC Delta ldhA Delta frdAB as base strain. Disruption of ackA-pta eliminated acetate production during glucose fermentation but resulted in the secretion of a significant amount of pyruvate (0.73 mol mol(-1) glucose) without improving the co-production of H-2 and ethanol. When pfkA or pgi was further disrupted to enhance NAD(P)H supply by diverting the carbon flux from Embden-Meyerhof-Parnas (EMP) pathway to the pentose phosphate pathway (PPP), the cell growth of both strains was severely impaired under anaerobic conditions, and only the Delta pfkA mutant could recover its growth after adaptive evolution. The production yields of the Delta pfkA strain (H-2, 1.03 mol mol(-1) glucose and ethanol, 1.04 mol mol(-1) glucose) were higher than those of the pfkA(+) strain (H-2, 0.69 mol mol(-1) glucose and ethanol, 0.95 mol mol(-1) glucose), but pyruvate excretion was not reduced. The excessive excretion of pyruvate in the Delta pfkA mutant was attributed to an insufficient NAD(P)H supply caused by the diversion of carbon flux from the EMP pathway to the Entner-Doudoroff pathway (EDP), rather than the PPP as intended. This study suggests that co-production of H-2 and ethanol from glucose is possible, but further metabolic pathway engineering is required to fully activate PPP under anaerobic conditions. -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.39, no.33, pp.19323 - 19330 -
dc.identifier.doi 10.1016/j.ijhydene.2014.06.054 -
dc.identifier.issn 0360-3199 -
dc.identifier.scopusid 2-s2.0-84929079346 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25312 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0360319914016954 -
dc.identifier.wosid 000345803900064 -
dc.language 영어 -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.title Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose -
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.