BROWSE

Related Researcher

Author

Cha, Dong-Hyun
High-impact Weather Prediction Lab (HWPL)
Research Interests
  • Typhoon Modeling, Regional Climate Modeling, High-impact Weather

ITEM VIEW & DOWNLOAD

Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models

Cited 6 times inthomson ciCited 3 times inthomson ci
Title
Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models
Author
Seo, Kyong-HwanOk, JungSon, Jun-HyeokCha, Dong-Hyun
Keywords
Monsoons
Issue Date
201310
Publisher
AMER METEOROLOGICAL SOC
Citation
JOURNAL OF CLIMATE, v.26, no.19, pp.7662 - 7675
Abstract
Future changes in the East Asian summer monsoon (EASM) are estimated from historical and Representative Concentration Pathway 6.0 (RCP6) experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The historical runs show that, like the CMIP3 models, the CMIP5 models produce slightly smaller precipitation. A moisture budget analysis illustrates that this precipitation deficit is due to an underestimation in evaporation and ensuing moisture flux convergence. Of the two components of the moisture flux convergence (i.e., moisture convergence and horizontal moist advection), moisture convergence associated with mass convergence is underestimated to a greater degree. Precipitation is anticipated to increase by 10%-15% toward the end of the twenty-first century over the major monsoonal front region. A statistically significant increase is predicted to occur mostly over the Baiu region and to the north and northeast of the Korean Peninsula. This increase is attributed to an increase in evaporation and moist flux convergence (with enhanced moisture convergence contributing the most) induced by the northwestward strengthening of the North Pacific subtropical high (NPSH), a characteristic feature of the future EASM that occurred in CMIP5 simulations. Along the northern and northwestern flank of the strengthened NPSH, intensified southerly or southwesterly winds lead to the increase in moist convergence, enhancing precipitation over these areas. However, future precipitation over the East China Sea is projected to decrease. In the EASM domain, a local mechanism prevails, with increased moisture and moisture convergence leading to a greater increase in moist static energy in the lower troposphere than in the upper troposphere, reducing tropospheric stability.
URI
http://scholarworks.unist.ac.kr/handle/201301/2510
DOI
http://dx.doi.org/10.1175/JCLI-D-12-00694.1
ISSN
0894-8755
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU