BROWSE

Related Researcher

Author

Chung, Moses
Intense Beam and Accelerator Laboratory (IBAL)
Research Interests
  • Accelerator, beam physics and diagnostics, plasma

ITEM VIEW & DOWNLOAD

Acceleration of electrons in the plasma wakefield of a proton bunch

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Acceleration of electrons in the plasma wakefield of a proton bunch
Author
Adli, E.Ahuja, A.Apsimon, O.Apsimon, R.Bachmann, A. -M.Barrientos, D.Batsch, F.Bauche, J.Olsen, V. K. BerglydBernardini, M.Bohl, T.Bracco, C.Braunmueller, F.Burt, G.Buttenschoen, B.Caldwell, A.Cascella, M.Chappell, J.Chevallay, E.Chung, MosesCooke, D.Damerau, H.Deacon, L.Deubner, L. H.Dexter, A.Doebert, S.Farmer, J.Fedosseev, V. N.Fiorito, R.Fonseca, R. A.Friebel, F.Garolfi, L.Gessner, S.Gorgisyan, I.Gorn, A. A.Granados, E.Grulke, O.Gschwendtner, E.Hansen, J.Helm, A.Henderson, J. R.Huether, M.Ibison, M.Jensen, L.Jolly, S.Keeble, F.Kim, S. -Y.Kraus, F.Li, Y.Liu, S.Lopes, N.Lotov, K. V.Brun, L. MaricalvaMartyanov, M.Mazzoni, S.Godoy, D. MedinaMinakov, V. A.Mitchell, J.Molendijk, J. C.Moody, J. T.Moreira, M.Muggli, P.Oez, E.Pasquino, C.Pardons, A.Asmus, F. PenaPepitone, K.Perera, A.Petrenko, A.Pitman, S.Pukhov, A.Rey, S.Rieger, K.Ruhl, H.Schmidt, J. S.Shalimova, I. A.Sherwood, P.Silva, L. O.Soby, L.Sosedkin, A. P.Speroni, R.Spitsyn, R. I.Tuev, P. V.Turner, M.Velotti, F.Verra, L.Verzilov, V. A.Vieira, J.Welsch, C. P.Williamson, B.Wing, M.Woolley, B.Xia, G.
Issue Date
201809
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE, v.561, no.7723, pp.363 - 367
Abstract
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).
URI
Go to Link
DOI
http://dx.doi.org/10.1038/s41586-018-0485-4
ISSN
0028-0836
Appears in Collections:
SNS_Journal Papers
Files in This Item:
s41586-018-0485-4.pdfDownload

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU